
Hurl Documentation

Version 5.0.1 - 18/09/2024

Table of Contents
Introduction

What’s Hurl?
Also an HTTP Test Tool
Why Hurl?
Powered by curl
Feedbacks
Resources

Getting Started
Installation

Binaries Installation
Linux

Debian / Ubuntu
Alpine
Arch Linux / Manjaro
NixOS / Nix

macOS
Homebrew
MacPorts

FreeBSD
Windows

Zip File
Installer
Chocolatey
Scoop
Windows Package Manager

Cargo
conda-forge
Docker
npm

Building From Sources
Build on Linux

Debian based distributions
Fedora based distributions
Red Hat based distributions
Arch based distributions
Alpine based distributions

Build on macOS
Build on Windows

Manual
Name
Synopsis
Description
Hurl File Format

Capturing values
Asserts

Options
Environment
Exit Codes
WWW
See Also

Samples

http://localhost:4000/docs/standalone/hurl-5.0.1.html#getting-started-installation-debian--ubuntu
http://localhost:4000/docs/standalone/hurl-5.0.1.html#getting-started-installation-arch-linux--manjaro
http://localhost:4000/docs/standalone/hurl-5.0.1.html#getting-started-installation-nixos--nix

Getting Data
HTTP Headers
Query Params
Basic Authentication
Passing Data between Requests

Sending Data
Sending HTML Form Data
Sending Multipart Form Data
Posting a JSON Body
Templating a JSON Body
Templating a XML Body
Using GraphQL Query

Testing Response
Testing Status Code
Testing Response Headers
Testing REST APIs
Testing HTML Response
Testing Set-Cookie Attributes
Testing Bytes Content
SSL Certificate
Checking Full Body

Reports
HTML Report
JSON Report
JUnit Report
TAP Report
JSON Output

Others
HTTP Version
Polling and Retry
Delaying Requests
Skipping Requests
Testing Endpoint Performance
Using SOAP APIs
Capturing and Using a CSRF Token
Checking Byte Order Mark (BOM) in Response Body
AWS Signature Version 4 Requests
Using curl Options

Running Tests
Use --test Option

Selecting Tests

Debugging
Debug Logs
HTTP Responses

Generating Report
HTML Report
JSON Report
JUnit Report
TAP Report

Use Variables in Tests

Frequently Asked Questions
General

Why “Hurl”?
Yet Another Tool, I already use X
Hurl is build on top of libcurl, but what is added?

Why shouldn’t I use Hurl?
I have a large numbers of tests, how to run just specific tests?
How can I use my Hurl files outside Hurl?
Can I do calculation within a Hurl file?

macOS
How can I use a custom libcurl (from Homebrew by instance)?

File Format
Hurl File

Character Encoding
File Extension
Comments
Special Characters in Strings

Entry
Definition
Example
Description

Options
Cookie storage
Redirects
Retry
Control flow

Request
Definition
Example
Structure
Description

Method
URL
Headers
Query parameters
Form parameters
Multipart Form Data
Cookies
Basic Authentication
Body

JSON body
XML body
GraphQL query
Multiline string body
Oneline string body
Base64 body
Hex body
File body

Options

Response
Definition
Example
Structure
Capture and Assertion

Body compression

Timings

Capturing Response
Captures

Query
Status capture
Header capture

URL capture
Cookie capture
Body capture
Bytes capture
XPath capture
JSONPath capture
Regex capture
Variable capture
Duration capture
SSL certificate capture

Asserting Response
Asserts
Implicit asserts

Version - Status
Headers

Explicit asserts
Predicates
Status assert
Header assert
URL assert
Cookie assert
Body assert
Bytes assert
XPath assert
JSONPath assert
Regex assert
SHA-256 assert
MD5 assert
Variable assert
Duration assert
SSL certificate assert

Body
JSON body
XML body
Multiline string body

Oneline string body

Base64 body
File body

Filters
Definition
Example
Description

count
daysAfterNow
daysBeforeNow
decode
format
htmlEscape
htmlUnescape
jsonpath
nth
regex
replace
split
toDate
toFloat
toInt
urlDecode
urlEncode

xpath

Templates
Variables
Types
Injecting Variables

variable option
variables-file option
Environment variable
Options sections

Templating Body

Grammar
Definitions
Syntax Grammar

Resources
License

Introduction

What’s Hurl?

Hurl is a command line tool that runs HTTP requests defined in a simple plain text format.

It can chain requests, capture values and evaluate queries on headers and body response. Hurl is
very versatile: it can be used for both fetching data and testing HTTP sessions.

Hurl makes it easy to work with HTML content, REST / SOAP / GraphQL APIs, or any other XML /
JSON based APIs.

Get home:
GET https://example.org
HTTP 200
[Captures]
csrf_token: xpath "string(//meta[@name='_csrf_token']/@content)"

Do login!
POST https://example.org/login?user=toto&password=1234
X-CSRF-TOKEN: {{csrf_token}}
HTTP 302

Chaining multiple requests is easy:

GET https://example.org/api/health
GET https://example.org/api/step1
GET https://example.org/api/step2
GET https://example.org/api/step3

Also an HTTP Test Tool

Hurl can run HTTP requests but can also be used to test HTTP responses. Different types of
queries and predicates are supported, from XPath and JSONPath on body response, to assert on
status code and response headers.

It is well adapted for REST / JSON APIs

POST https://example.org/api/tests
{
 "id": "4568",
 "evaluate": true
}
HTTP 200
[Asserts]
header "X-Frame-Options" == "SAMEORIGIN"
jsonpath "$.status" == "RUNNING" # Check the status code
jsonpath "$.tests" count == 25 # Check the number of items
jsonpath "$.id" matches /\d{4}/ # Check the format of the id

https://en.wikipedia.org/wiki/XPath
https://goessner.net/articles/JsonPath/

HTML content

GET https://example.org
HTTP 200
[Asserts]
xpath "normalize-space(//head/title)" == "Hello world!"

GraphQL

POST https://example.org/graphql
```graphql
{
  human(id: "1000") {
    name
    height(unit: FOOT)
  }
}
```
HTTP 200

and even SOAP APIs

Hurl can also be used to test the performance of HTTP endpoints

GET https://example.org/api/v1/pets
HTTP 200
[Asserts]
duration < 1000 # Duration in ms

And check response bytes

Finally, Hurl is easy to integrate in CI/CD, with text, JUnit, TAP and HTML reports

POST https://example.org/InStock
Content-Type: application/soap+xml; charset=utf-8
SOAPAction: "http://www.w3.org/2003/05/soap-envelope"
<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope" xmlns:m="https://example.org">
 <soap:Header></soap:Header>
 <soap:Body>
 <m:GetStockPrice>
 <m:StockName>GOOG</m:StockName>
 </m:GetStockPrice>
 </soap:Body>
</soap:Envelope>
HTTP 200

GET https://example.org/data.tar.gz
HTTP 200
[Asserts]
sha256 == hex,039058c6f2c0cb492c533b0a4d14ef77cc0f78abccced5287d84a1a2011cfb81;

Why Hurl?

Text Format

For both devops and developers

Fast CLI

A command line for local dev and continuous integration

Single Binary

Easy to install, with no runtime required

Powered by curl

Hurl is a lightweight binary written in Rust. Under the hood, Hurl HTTP engine is powered by libcurl,
one of the most powerful and reliable file transfer libraries. With its text file format, Hurl adds
syntactic sugar to run and test HTTP requests, but it’s still the curl that we love: fast, efficient and
HTTP/3 ready.

Feedbacks

To support its development, star Hurl on GitHub!

Feedback, suggestion, bugs or improvements are welcome.

POST https://hurl.dev/api/feedback
{
 "name": "John Doe",
 "feedback": "Hurl is awesome!"
}
HTTP 200

Resources

License

Blog

https://www.rust-lang.org/
https://curl.se/libcurl/
https://curl.se/
https://github.com/Orange-OpenSource/hurl/stargazers
https://github.com/Orange-OpenSource/hurl/issues
http://localhost:4000/docs/standalone/hurl-5.0.1.html#resources-license
https://hurl.dev/blog

Tutorial

Documentation

GitHub

https://hurl.dev/docs/tutorial/your-first-hurl-file.html
https://hurl.dev/
https://github.com/Orange-OpenSource/hurl

Getting Started

Installation

Binaries Installation

Linux

Precompiled binary is available at Hurl latest GitHub release:

Debian / Ubuntu

For Debian / Ubuntu, Hurl can be installed using a binary .deb file provided in each Hurl release.

Alpine

Hurl is available on testing channel.

$ apk add --repository http://dl-cdn.alpinelinux.org/alpine/edge/testing hurl

Arch Linux / Manjaro

Hurl is available on extra channel.

$ pacman -Sy hurl

NixOS / Nix

NixOS / Nix package is available on stable channel.

macOS

Precompiled binaries for Intel and ARM CPUs are available at Hurl latest GitHub release.

Homebrew

$ brew install hurl

MacPorts

$ INSTALL_DIR=/tmp
$ VERSION=5.0.1
$ curl --silent --location https://github.com/Orange-OpenSource/hurl/releases/download/$VERSION/hurl-$VERSION-x86_64-unknown-linux-gnu.tar.gz | tar xvz -C $INSTALL_DIR
$ export PATH=$INSTALL_DIR/hurl-$VERSION-x86_64-unknown-linux-gnu/bin:$PATH

$ VERSION=5.0.1
$ curl --location --remote-name https://github.com/Orange-OpenSource/hurl/releases/download/$VERSION/hurl_${VERSION}_amd64.deb
$ sudo apt update && sudo apt install ./hurl_${VERSION}_amd64.deb

https://github.com/Orange-OpenSource/hurl/releases/latest
https://archlinux.org/packages/extra/x86_64/hurl/
https://search.nixos.org/packages?from=0&size=1&sort=relevance&type=packages&query=hurl
https://github.com/Orange-OpenSource/hurl/releases/latest

$ sudo port install hurl

FreeBSD

$ sudo pkg install hurl

Windows

Windows requires the Visual C++ Redistributable Package to be installed manually, as this is not
included in the installer.

Zip File

Hurl can be installed from a standalone zip file at Hurl latest GitHub release. You will need to update
your PATH variable.

Installer

An executable installer is also available at Hurl latest GitHub release.

Chocolatey

$ choco install hurl

Scoop

$ scoop install hurl

Windows Package Manager

$ winget install hurl

Cargo

If you’re a Rust programmer, Hurl can be installed with cargo.

$ cargo install hurl

conda-forge

$ conda install -c conda-forge hurl

Hurl can also be installed with conda-forge powered package manager like pixi.

Docker

$ docker pull ghcr.io/orange-opensource/hurl:latest

npm

https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170#latest-microsoft-visual-c-redistributable-version
https://github.com/Orange-OpenSource/hurl/releases/latest
https://github.com/Orange-OpenSource/hurl/releases/latest
https://conda-forge.org/
https://prefix.dev/

$ npm install --save-dev @orangeopensource/hurl

Building From Sources

Hurl sources are available in GitHub.

Build on Linux

Hurl depends on libssl, libcurl and libxml2 native libraries. You will need their development files in
your platform.

Debian based distributions

Fedora based distributions

$ dnf install -y pkgconf-pkg-config gcc openssl-devel libxml2-devel

Red Hat based distributions

$ yum install -y pkg-config gcc openssl-devel libxml2-devel

Arch based distributions

$ pacman -S --noconfirm pkgconf gcc glibc openssl libxml2

Alpine based distributions

$ apk add curl-dev gcc libxml2-dev musl-dev openssl-dev

Build on macOS

$ xcode-select --install
$ brew install pkg-config

Hurl is written in Rust. You should install the latest stable release.

$ curl https://sh.rustup.rs -sSf | sh -s -- -y
$ source $HOME/.cargo/env
$ rustc --version
$ cargo --version

Then build hurl:

$ git clone https://github.com/Orange-OpenSource/hurl
$ cd hurl

$ apt install -y build-essential pkg-config libssl-dev libcurl4-openssl-dev libxml2-dev

https://github.com/Orange-OpenSource/hurl
https://www.rust-lang.org/
https://www.rust-lang.org/tools/install

$ cargo build --release
$./target/release/hurl --version

Build on Windows

Please follow the contrib on Windows section.

Manual

Name

hurl - run and test HTTP requests.

Synopsis

hurl [options] [FILE...]

Description

Hurl is a command line tool that runs HTTP requests defined in a simple plain text format.

It can chain requests, capture values and evaluate queries on headers and body response. Hurl is
very versatile, it can be used for fetching data and testing HTTP sessions: HTML content, REST /
SOAP / GraphQL APIs, or any other XML / JSON based APIs.

$ hurl session.hurl

If no input files are specified, input is read from stdin.

$ echo GET http://httpbin.org/get | hurl
 {
 "args": {},
 "headers": {
 "Accept": "*/*",
 "Accept-Encoding": "gzip",
 "Content-Length": "0",
 "Host": "httpbin.org",
 "User-Agent": "hurl/0.99.10",
 "X-Amzn-Trace-Id": "Root=1-5eedf4c7-520814d64e2f9249ea44e0"
 },
 "origin": "1.2.3.4",
 "url": "http://httpbin.org/get"
 }

Hurl can take files as input, or directories. In the latter case, Hurl will search files with .hurl
extension recursively.

Output goes to stdout by default. To have output go to a file, use the -o, --output option:

$ hurl -o output input.hurl

https://github.com/Orange-OpenSource/hurl/blob/master/contrib/windows/README.md

By default, Hurl executes all HTTP requests and outputs the response body of the last HTTP call.

To have a test oriented output, you can use --test option:

$ hurl --test *.hurl

Hurl File Format

The Hurl file format is fully documented in https://hurl.dev/docs/hurl-file.html

It consists of one or several HTTP requests

GET http://example.org/endpoint1
GET http://example.org/endpoint2

Capturing values

A value from an HTTP response can be-reused for successive HTTP requests.

A typical example occurs with CSRF tokens.

GET https://example.org
HTTP 200
Capture the CSRF token value from html body.
[Captures]
csrf_token: xpath "normalize-space(//meta[@name='_csrf_token']/@content)"

Do the login !
POST https://example.org/login?user=toto&password=1234
X-CSRF-TOKEN: {{csrf_token}}

More information on captures can be found here https://hurl.dev/docs/capturing-response.html

Asserts

The HTTP response defined in the Hurl file are used to make asserts. Responses are optional.

At the minimum, response includes assert on the HTTP status code.

GET http://example.org
HTTP 301

It can also include asserts on the response headers

GET http://example.org
HTTP 301
Location: http://www.example.org

Explicit asserts can be included by combining a query and a predicate

GET http://example.org
HTTP 301
[Asserts]

https://hurl.dev/docs/hurl-file.html
https://hurl.dev/docs/capturing-response.html

xpath "string(//title)" == "301 Moved"

With the addition of asserts, Hurl can be used as a testing tool to run scenarios.

More information on asserts can be found here https://hurl.dev/docs/asserting-response.html

Options

Options that exist in curl have exactly the same semantics.

Options specified on the command line are defined for every Hurl file’s entry, except if they are
tagged as cli-only (can not be defined in the Hurl request [Options] entry)

For instance:

$ hurl --location foo.hurl

will follow redirection for each entry in foo.hurl. You can also define an option only for a particular
entry with an [Options] section. For instance, this Hurl file:

GET https://example.org
HTTP 301

GET https://example.org
[Options]
location: true
HTTP 200

will follow a redirection only for the second entry.

Option Description

--aws-sigv4
<PROVIDER1[:PROVIDER2[:REGION[:SERVICE]]]>

Generate an Authorization
header with an AWS SigV4
signature.

Use -u, --user to specify Access
Key Id (username) and Secret Key
(password).

To use temporary session
credentials (e.g. for an AWS IAM
Role), add the X-Amz-Security-
Token header containing the
session token.

--cacert <FILE>

Specifies the certificate file for peer
verification. The file may contain
multiple CA certificates and must
be in PEM format.
Normally Hurl is built to use a
default file for this, so this option is
typically used to alter that default
file.

Client certificate file and password.

https://hurl.dev/docs/asserting-response.html

-E, --cert <CERTIFICATE[:PASSWORD]>
See also --key.

--color

Colorize debug output (the HTTP
response output is not colorized).

This is a cli-only option.

--compressed

Request a compressed response
using one of the algorithms br,
gzip, deflate and automatically
decompress the content.

--connect-timeout <SECONDS>

Maximum time in seconds that you
allow Hurl’s connection to take.

You can specify time units in the
connect timeout expression. Set
Hurl to use a connect timeout of 20
seconds with --connect-timeout
20s or set it to 35,000 milliseconds
with --connect-timeout 35000ms.
No spaces allowed.

See also -m, --max-time.

This is a cli-only option.

--connect-to <HOST1:PORT1:HOST2:PORT2>

For a request to the given
HOST1:PORT1 pair, connect to
HOST2:PORT2 instead. This
option can be used several times in
a command line.

See also --resolve.

--continue-on-error

Continue executing requests to the
end of the Hurl file even when an
assert error occurs.
By default, Hurl exits after an
assert error in the HTTP response.

Note that this option does not affect
the behavior with multiple input
Hurl files.

All the input files are executed
independently. The result of one
file does not affect the execution of
the other Hurl files.

This is a cli-only option.

-b, --cookie <FILE>

Read cookies from FILE (using the
Netscape cookie file format).

Combined with -c, --cookie-jar,
you can simulate a cookie storage
between successive Hurl runs.

This is a cli-only option.

Write cookies to FILE after running
the session (only for one session).

-c, --cookie-jar <FILE>

The file will be written using the
Netscape cookie file format.

Combined with -b, --cookie, you
can simulate a cookie storage
between successive Hurl runs.

This is a cli-only option.

--delay <MILLISECONDS>

Sets delay before each request.
The delay is not applied to
requests that have been retried
because of --retry. See --
retry-interval to space retried
requests.

You can specify time units in the
delay expression. Set Hurl to use a
delay of 2 seconds with --delay
2s or set it to 500 milliseconds with
--delay 500ms. No spaces
allowed.

--error-format <FORMAT>

Control the format of error
message (short by default or long)

This is a cli-only option.

--file-root <DIR>

Set root directory to import files in
Hurl. This is used for files in
multipart form data, request body
and response output.
When it is not explicitly defined,
files are relative to the Hurl file’s
directory.

This is a cli-only option.

--from-entry <ENTRY_NUMBER>

Execute Hurl file from
ENTRY_NUMBER (starting at 1).

This is a cli-only option.

--glob <GLOB>

Specify input files that match the
given glob pattern.

Multiple glob flags may be used.
This flag supports common Unix
glob patterns like *, ? and [].
However, to avoid your shell
accidentally expanding glob
patterns before Hurl handles them,
you must use single quotes or
double quotes around each
pattern.

This is a cli-only option.

-0, --http1.0
Tells Hurl to use HTTP version 1.0
instead of using its internally
preferred HTTP version.

--http1.1 Tells Hurl to use HTTP version 1.1.

--http2

Tells Hurl to use HTTP version 2.
For HTTPS, this means Hurl
negotiates HTTP/2 in the TLS
handshake. Hurl does this by
default.
For HTTP, this means Hurl
attempts to upgrade the request to
HTTP/2 using the Upgrade:
request header.

--http3

Tells Hurl to try HTTP/3 to the host
in the URL, but fallback to earlier
HTTP versions if the HTTP/3
connection establishment fails.
HTTP/3 is only available for
HTTPS and not for HTTP URLs.

--ignore-asserts

Ignore all asserts defined in the
Hurl file.

This is a cli-only option.

-i, --include

Include the HTTP headers in the
output

This is a cli-only option.

-k, --insecure
This option explicitly allows Hurl to
perform “insecure” SSL
connections and transfers.

--interactive

Stop between requests.

This is similar to a break point, You
can then continue (Press C) or quit
(Press Q).

This is a cli-only option.

-4, --ipv4

This option tells Hurl to use IPv4
addresses only when resolving
host names, and not for example
try IPv6.

-6, --ipv6

This option tells Hurl to use IPv6
addresses only when resolving
host names, and not for example
try IPv4.

--jobs <NUM>

Maximum number of parallel jobs
in parallel mode. Default value
corresponds (in most cases) to the
current amount of CPUs.

See also --parallel.

This is a cli-only option.

--json

Output each Hurl file result to
JSON. The format is very closed to
HAR format.

This is a cli-only option.

--key <KEY> Private key file name.

-L, --location
Follow redirect. To limit the amount
of redirects to follow use the --
max-redirs option

--location-trusted

Like -L, --location, but allows
sending the name + password to all
hosts that the site may redirect to.
This may or may not introduce a
security breach if the site redirects
you to a site to which you send
your authentication info (which is
plaintext in the case of HTTP Basic
authentication).

--max-filesize <BYTES>

Specify the maximum size (in
bytes) of a file to download. If the
file requested is larger than this
value, the transfer does not start.

This is a cli-only option.

--max-redirs <NUM>

Set maximum number of
redirection-followings allowed

By default, the limit is set to 50
redirections. Set this option to -1 to
make it unlimited.

-m, --max-time <SECONDS>

Maximum time in seconds that you
allow a request/response to take.
This is the standard timeout.

You can specify time units in the
maximum time expression. Set
Hurl to use a maximum time of 20
seconds with --max-time 20s or
set it to 35,000 milliseconds with --
max-time 35000ms. No spaces
allowed.

See also --connect-timeout.

This is a cli-only option.

-n, --netrc

Scan the .netrc file in the user’s
home directory for the username
and password.

See also --netrc-file and --
netrc-optional.

--netrc-file <FILE>

Like --netrc, but provide the path
to the netrc file.

See also --netrc-optional.

--netrc-optional

Similar to --netrc, but make the
.netrc usage optional.

See also --netrc-file.

Do not colorize output.

--no-color
This is a cli-only option.

--no-output

Suppress output. By default, Hurl
outputs the body of the last
response.

This is a cli-only option.

--noproxy <HOST(S)>

Comma-separated list of hosts
which do not use a proxy.

Override value from Environment
variable no_proxy.

-o, --output <FILE>
Write output to FILE instead of
stdout.

--parallel

Run files in parallel.

Each Hurl file is executed in its own
worker thread, without sharing
anything with the other workers.
The default run mode is sequential.
Parallel execution is by default in -
-test mode.

See also --jobs.

This is a cli-only option.

--path-as-is

Tell Hurl to not handle sequences
of /../ or /./ in the given URL path.
Normally Hurl will squash or merge
them according to standards but
with this option set you tell it not to
do that.

-x, --proxy <[PROTOCOL://]HOST[:PORT]> Use the specified proxy.

--repeat <NUM>

Repeat the input files sequence
NUM times, -1 for infinite loop.
Given a.hurl, b.hurl, c.hurl as input,
repeat two
times will run a.hurl, b.hurl, c.hurl,
a.hurl, b.hurl, c.hurl.

This is a cli-only option.

--report-html <DIR>

Generate HTML report in DIR.

If the HTML report already exists, it
will be updated with the new test
results.

This is a cli-only option.

--report-json <DIR>

Generate JSON report in DIR.

If the JSON report already exists, it
will be updated with the new test
results.

This is a cli-only option.

--report-junit <FILE>

Generate JUnit File.

If the FILE report already exists, it
will be updated with the new test
results.

This is a cli-only option.

--report-tap <FILE>

Generate TAP report.

If the FILE report already exists, it
will be updated with the new test
results.

This is a cli-only option.

--resolve <HOST:PORT:ADDR>

Provide a custom address for a
specific host and port pair. Using
this, you can make the Hurl
requests(s) use a specified
address and prevent the otherwise
normally resolved address to be
used. Consider it a sort of
/etc/hosts alternative provided on
the command line.

--retry <NUM>

Maximum number of retries, 0 for
no retries, -1 for unlimited retries.
Retry happens if any error occurs
(asserts, captures, runtimes etc...).

--retry-interval <MILLISECONDS>

Duration in milliseconds between
each retry. Default is 1000 ms.

You can specify time units in the
retry interval expression. Set Hurl
to use a retry interval of 2 seconds
with --retry-interval 2s or set
it to 500 milliseconds with --
retry-interval 500ms. No
spaces allowed.

--ssl-no-revoke

(Windows) This option tells Hurl to
disable certificate revocation
checks. WARNING: this option
loosens the SSL security, and by
using this flag you ask for exactly
that.

This is a cli-only option.

--test

Activate test mode: with this, the
HTTP response is not outputted
anymore, progress is reported for
each Hurl file tested, and a text
summary is displayed when all files
have been run.

In test mode, files are executed in
parallel. To run test in a sequential
way use --job 1.

See also --jobs.

This is a cli-only option.

--to-entry <ENTRY_NUMBER>

Execute Hurl file to
ENTRY_NUMBER (starting at 1).
Ignore the remaining of the file. It is
useful for debugging a session.

This is a cli-only option.

--unix-socket <PATH>
(HTTP) Connect through this Unix
domain socket, instead of using the
network.

-u, --user <USER:PASSWORD>
Add basic Authentication header to
each request.

-A, --user-agent <NAME>

Specify the User-Agent string to
send to the HTTP server.

This is a cli-only option.

--variable <NAME=VALUE>
Define variable (name/value) to be
used in Hurl templates.

--variables-file <FILE>

Set properties file in which your
define your variables.

Each variable is defined as
name=value exactly as with --
variable option.

Note that defining a variable twice
produces an error.

This is a cli-only option.

-v, --verbose

Turn on verbose output on
standard error stream.
Useful for debugging.

A line starting with ‘>’ means data
sent by Hurl.
A line staring with ‘<’ means data
received by Hurl.
A line starting with ‘*’ means
additional info provided by Hurl.

If you only want HTTP headers in
the output, -i, --include might
be the option you’re looking for.

--very-verbose

Turn on more verbose output on
standard error stream.

In contrast to --verbose option,
this option outputs the full HTTP
body request and response on
standard error. In addition, lines
starting with ‘**’ are libcurl debug
logs.

-h, --help

Usage help. This lists all current
command line options with a short
description.

-V, --version Prints version information

Environment

Environment variables can only be specified in lowercase.

Using an environment variable to set the proxy has the same effect as using the -x, --proxy
option.

Variable Description

http_proxy
[PROTOCOL://]
<HOST>[:PORT]

Sets the proxy server to use for HTTP.

https_proxy
[PROTOCOL://]
<HOST>[:PORT]

Sets the proxy server to use for HTTPS.

all_proxy
[PROTOCOL://]
<HOST>[:PORT]

Sets the proxy server to use if no protocol-specific proxy is set.

no_proxy <comma-
separated list of
hosts>

List of host names that shouldn’t go through any proxy.

HURL_name value
Define variable (name/value) to be used in Hurl templates. This
is similar than --variable and --variables-file options.

NO_COLOR
When set to a non-empty string, do not colorize output (see --
no-color option).

Exit Codes

Value Description

0 Success.

1 Failed to parse command-line options.

2 Input File Parsing Error.

3 Runtime error (such as failure to connect to host).

4 Assert Error.

WWW

https://hurl.dev

See Also

https://hurl.dev/

curl(1) hurlfmt(1)

Samples

To run a sample, edit a file with the sample content, and run Hurl:

$ vi sample.hurl

GET https://example.org

$ hurl sample.hurl

By default, Hurl behaves like curl and outputs the last HTTP response’s entry. To have a test
oriented output, you can use --test option:

$ hurl --test sample.hurl

A particular response can be saved with [Options] section:

GET https://example.ord/cats/123
[Options]
output: cat123.txt # use - to output to stdout
HTTP 200

GET https://example.ord/dogs/567
HTTP 200

Finally, Hurl can take files as input, or directories. In the latter case, Hurl will search files with .hurl
extension recursively.

$ hurl --test integration/*.hurl
$ hurl --test .

You can check Hurl tests suite for more samples.

Getting Data

A simple GET:

GET https://example.org

Requests can be chained:

GET https://example.org/a
GET https://example.org/b
HEAD https://example.org/c
GET https://example.org/c

Doc

https://curl.se/
http://localhost:4000/docs/standalone/hurl-5.0.1.html#file-format-entry
https://github.com/Orange-OpenSource/hurl/tree/master/integration/hurl/tests_ok

HTTP Headers

A simple GET with headers:

GET https://example.org/news
User-Agent: Mozilla/5.0
Accept: */*
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate, br
Connection: keep-alive

Doc

Query Params

GET https://example.org/news
[QueryStringParams]
order: newest
search: something to search
count: 100

Or:

With [QueryStringParams] section, params don’t need to be URL escaped.

Doc

Basic Authentication

GET https://example.org/protected
[BasicAuth]
bob: secret

Doc

This is equivalent to construct the request with a Authorization header:

Basic authentication section allows per request authentication. If you want to add basic
authentication to all the requests of a Hurl file you could use -u/--user option:

$ hurl --user bob:secret login.hurl

--user option can also be set per request:

GET https://example.org/news?order=newest&search=something%20to%20search&count=100

Authorization header value can be computed with `echo -n 'bob:secret' | base64`
GET https://example.org/protected
Authorization: Basic Ym9iOnNlY3JldA==

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization

GET https://example.org/login
[Options]
user: bob:secret
HTTP 200

GET https://example.org/login
[Options]
user: alice:secret
HTTP 200

Passing Data between Requests

Captures can be used to pass data from one request to another:

POST https://sample.org/orders
HTTP 201
[Captures]
order_id: jsonpath "$.order.id"

GET https://sample.org/orders/{{order_id}}
HTTP 200

Doc

Sending Data

Sending HTML Form Data

POST https://example.org/contact
[FormParams]
default: false
token: {{token}}
email: john.doe@rookie.org
number: 33611223344

Doc

Sending Multipart Form Data

POST https://example.org/upload
[MultipartFormData]
field1: value1
field2: file,example.txt;
One can specify the file content type:
field3: file,example.zip; application/zip

Doc

Multipart forms can also be sent with a multiline string body:

POST https://example.org/upload
Content-Type: multipart/form-data; boundary="boundary"
```
--boundary
Content-Disposition: form-data; name="key1"

value1
--boundary

http://localhost:4000/docs/standalone/hurl-5.0.1.html#file-format-capturing-response
http://localhost:4000/docs/standalone/hurl-5.0.1.html#file-format-capturing-response


Content-Disposition: form-data; name="upload1"; filename="data.txt"
Content-Type: text/plain

Hello World!
--boundary
Content-Disposition: form-data; name="upload2"; filename="data.html"
Content-Type: text/html

<div>Hello <b>World</b>!</div>
--boundary--
```

In that case, files have to be inlined in the Hurl file.

Doc

Posting a JSON Body

With an inline JSON:

POST https://example.org/api/tests
{
 "id": "456",
 "evaluate": true
}

Doc

With a local file:

POST https://example.org/api/tests
Content-Type: application/json
file,data.json;

Doc

Templating a JSON Body

PUT https://example.org/api/hits
Content-Type: application/json
{
 "key0": "{{a_string}}",
 "key1": {{a_bool}},
 "key2": {{a_null}},
 "key3": {{a_number}}
}

Variables can be initialized via command line:

$ hurl --variable a_string=apple \
 --variable a_bool=true \
 --variable a_null=null \
 --variable a_number=42 \
 test.hurl

Resulting in a PUT request with the following JSON body:

{

 "key0": "apple",
 "key1": true,
 "key2": null,
 "key3": 42
}

Doc

Templating a XML Body

Using templates with XML body is not currently supported in Hurl. You can use templates in XML
multiline string body with variables to send a variable XML body:

POST https://example.org/echo/post/xml
```xml
<?xml version="1.0" encoding="utf-8"?>
<Request>
    <Login>{{login}}</Login>
    <Password>{{password}}</Password>
</Request>
```

Doc

Using GraphQL Query

A simple GraphQL query:

POST https://example.org/starwars/graphql
```graphql
{
  human(id: "1000") {
    name
    height(unit: FOOT)
  }
}
```

A GraphQL query with variables:

POST https://example.org/starwars/graphql
```graphql
query Hero($episode: Episode, $withFriends: Boolean!) {
  hero(episode: $episode) {
    name
    friends @include(if: $withFriends) {
      name
    }
  }
}

variables {
  "episode": "JEDI",
  "withFriends": false
}
```

GraphQL queries can also use Hurl templates.

Doc

http://localhost:4000/docs/standalone/hurl-5.0.1.html#file-format-templates
http://localhost:4000/docs/standalone/hurl-5.0.1.html#file-format-templates
http://localhost:4000/docs/standalone/hurl-5.0.1.html#file-format-request-graphql-body

Testing Response

Responses are optional, everything after HTTP is part of the response asserts.

A request with (almost) no check:
GET https://foo.com

A status code check:
GET https://foo.com
HTTP 200

A test on response body
GET https://foo.com
HTTP 200
[Asserts]
jsonpath "$.state" == "running"

Testing Status Code

GET https://example.org/order/435
HTTP 200

Doc

GET https://example.org/order/435
Testing status code is in a 200-300 range
HTTP *
[Asserts]
status >= 200
status < 300

Doc

Testing Response Headers

Use implicit response asserts to test header values:

GET https://example.org/index.html
HTTP 200
Set-Cookie: theme=light
Set-Cookie: sessionToken=abc123; Expires=Wed, 09 Jun 2021 10:18:14 GMT

Doc

Or use explicit response asserts with predicates:

GET https://example.org
HTTP 302
[Asserts]
header "Location" contains "www.example.net"

Doc

Implicit and explicit asserts can be combined:

GET https://example.org/index.html

HTTP 200
Set-Cookie: theme=light
Set-Cookie: sessionToken=abc123; Expires=Wed, 09 Jun 2021 10:18:14 GMT
[Asserts]
header "Location" contains "www.example.net"

Testing REST APIs

Asserting JSON body response (node values, collection count etc...) with JSONPath:

Doc

Testing HTML Response

GET https://example.org
HTTP 200
Content-Type: text/html; charset=UTF-8
[Asserts]
xpath "string(/html/head/title)" contains "Example" # Check title
xpath "count(//p)" == 2 # Check the number of p
xpath "//p" count == 2 # Similar assert for p
xpath "boolean(count(//h2))" == false # Check there is no h2
xpath "//h2" not exists # Similar assert for h2
xpath "string(//div[1])" matches /Hello.*/

Doc

Testing Set-Cookie Attributes

GET https://example.org/home
HTTP 200
[Asserts]
cookie "JSESSIONID" == "8400BAFE2F66443613DC38AE3D9D6239"
cookie "JSESSIONID[Value]" == "8400BAFE2F66443613DC38AE3D9D6239"
cookie "JSESSIONID[Expires]" contains "Wed, 13 Jan 2021"
cookie "JSESSIONID[Secure]" exists
cookie "JSESSIONID[HttpOnly]" exists
cookie "JSESSIONID[SameSite]" == "Lax"

Doc

Testing Bytes Content

Check the SHA-256 response body hash:

GET https://example.org/order
screencapability: low
HTTP 200
[Asserts]
jsonpath "$.validated" == true
jsonpath "$.userInfo.firstName" == "Franck"
jsonpath "$.userInfo.lastName" == "Herbert"
jsonpath "$.hasDevice" == false
jsonpath "$.links" count == 12
jsonpath "$.state" != null
jsonpath "$.order" matches "^order-\\d{8}$"
jsonpath "$.order" matches /^order-\d{8}$/ # Alternative syntax with regex literal
jsonpath "$.created" isIsoDate

GET https://example.org/data.tar.gz

https://goessner.net/articles/JsonPath/

Doc

SSL Certificate

Check the properties of a SSL certificate:

GET https://example.org
HTTP 200
[Asserts]
certificate "Subject" == "CN=example.org"
certificate "Issuer" == "C=US, O=Let's Encrypt, CN=R3"
certificate "Expire-Date" daysAfterNow > 15
certificate "Serial-Number" matches /[\da-f]+/

Doc

Checking Full Body

Use implicit body to test an exact JSON body match:

GET https://example.org/api/cats/123
HTTP 200
{
 "name" : "Purrsloud",
 "species" : "Cat",
 "favFoods" : ["wet food", "dry food", "any food"],
 "birthYear" : 2016,
 "photo" : "https://learnwebcode.github.io/json-example/images/cat-2.jpg"
}

Doc

Or an explicit assert file:

GET https://example.org/index.html
HTTP 200
[Asserts]
body == file,cat.json;

Doc

Implicit asserts supports XML body:

HTTP 200
[Asserts]
sha256 == hex,039058c6f2c0cb492c533b0a4d14ef77cc0f78abccced5287d84a1a2011cfb81;

GET https://example.org/api/catalog
HTTP 200
<?xml version="1.0" encoding="UTF-8"?>
<catalog>
 <book id="bk101">
 <author>Gambardella, Matthew</author>
 <title>XML Developer's Guide</title>
 <genre>Computer</genre>
 <price>44.95</price>
 <publish_date>2000-10-01</publish_date>
 <description>An in-depth look at creating applications with XML.</description>
 </book>

Doc

Plain text:

GET https://example.org/models
HTTP 200
```
Year,Make,Model,Description,Price
1997,Ford,E350,"ac, abs, moon",3000.00
1999,Chevy,"Venture ""Extended Edition""","",4900.00
1999,Chevy,"Venture ""Extended Edition, Very Large""",,5000.00
1996,Jeep,Grand Cherokee,"MUST SELL! air, moon roof, loaded",4799.00
```

Doc

One line:

POST https://example.org/helloworld
HTTP 200
`Hello world!`

Doc

File:

GET https://example.org
HTTP 200
file,data.bin;

Doc

Reports

HTML Report

$ hurl --test --report-html build/report/ *.hurl

Doc

JSON Report

$ hurl --test --report-json build/report/ *.hurl

Doc

JUnit Report

$ hurl --test --report-junit build/report.xml *.hurl

</catalog>

Doc

TAP Report

$ hurl --test --report-tap build/report.txt *.hurl

Doc

JSON Output

A structured output of running Hurl files can be obtained with --json option. Each file will produce a
JSON export of the run.

$ hurl --json *.hurl

Others

HTTP Version

Testing HTTP version (HTTP/1.0, HTTP/1.1, HTTP/2 or HTTP/3):

GET https://foo.com
HTTP/3 200

GET https://bar.com
HTTP/2 200

Doc

Polling and Retry

Retry request on any errors (asserts, captures, status code, runtime etc...):

Create a new job
POST https://api.example.org/jobs
HTTP 201
[Captures]
job_id: jsonpath "$.id"
[Asserts]
jsonpath "$.state" == "RUNNING"

Pull job status until it is completed
GET https://api.example.org/jobs/{{job_id}}
[Options]
retry: 10 # maximum number of retry, -1 for unlimited
retry-interval: 500ms
HTTP 200
[Asserts]
jsonpath "$.state" == "COMPLETED"

Doc

Delaying Requests

Add delay for every request, or a particular request:

Delaying this request by 5 seconds
GET https://example.org/turtle
[Options]
delay: 5s
HTTP 200

No delay!
GET https://example.org/turtle
HTTP 200

Doc

Skipping Requests

a, c, d are run, b is skipped
GET https://example.org/a

GET https://example.org/b
[Options]
skip: true

GET https://example.org/c

GET https://example.org/d

Doc

Testing Endpoint Performance

GET https://sample.org/helloworld
HTTP *
[Asserts]
duration < 1000 # Check that response time is less than one second

Doc

Using SOAP APIs

Doc

Capturing and Using a CSRF Token

GET https://example.org
HTTP 200
[Captures]

POST https://example.org/InStock
Content-Type: application/soap+xml; charset=utf-8
SOAPAction: "http://www.w3.org/2003/05/soap-envelope"
<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope" xmlns:m="https://example.org">
 <soap:Header></soap:Header>
 <soap:Body>
 <m:GetStockPrice>
 <m:StockName>GOOG</m:StockName>
 </m:GetStockPrice>
 </soap:Body>
</soap:Envelope>
HTTP 200

http://localhost:4000/docs/standalone/hurl-5.0.1.html#getting-started-manual-skip

csrf_token: xpath "string(//meta[@name='_csrf_token']/@content)"

POST https://example.org/login?user=toto&password=1234
X-CSRF-TOKEN: {{csrf_token}}
HTTP 302

Doc

Checking Byte Order Mark (BOM) in Response Body

GET https://example.org/data.bin
HTTP 200
[Asserts]
bytes startsWith hex,efbbbf;

Doc

AWS Signature Version 4 Requests

Generate signed API requests with AWS Signature Version 4, as used by several cloud providers.

POST https://sts.eu-central-1.amazonaws.com/
[Options]
aws-sigv4: aws:amz:eu-central-1:sts
[FormParams]
Action: GetCallerIdentity
Version: 2011-06-15

The Access Key is given per --user, either with command line option or within the [Options]
section:

POST https://sts.eu-central-1.amazonaws.com/
[Options]
aws-sigv4: aws:amz:eu-central-1:sts
user: bob=secret
[FormParams]
Action: GetCallerIdentity
Version: 2011-06-15

Doc

Using curl Options

curl options (for instance --resolve or --connect-to) can be used as CLI argument. In this case,
they’re applicable to each request of an Hurl file.

$ hurl --resolve foo.com:8000:127.0.0.1 foo.hurl

Use [Options] section to configure a specific request:

GET http://bar.com
HTTP 200

GET http://foo.com:8000/resolve
[Options]
resolve: foo.com:8000:127.0.0.1

https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html

HTTP 200
`Hello World!`

Doc

Running Tests

Use --test Option

Hurl is run by default as an HTTP client, returning the body of the last HTTP response.

$ hurl hello.hurl
Hello World!

When multiple input files are provided, Hurl outputs the body of the last HTTP response of each file.

$ hurl hello.hurl assert_json.hurl
Hello World![
 { "id": 1, "name": "Bob"},
 { "id": 2, "name": "Bill"}
]

For testing, we are only interested in the asserts results, we don’t need the HTTP body response. To
use Hurl as a test tool with an adapted output, you can use --test option:

Or, in case of errors:

$ hurl --test hello.hurl assert_json.hurl
hello.hurl: Success (6 request(s) in 245 ms)
assert_json.hurl: Success (8 request(s) in 308 ms)
--
Executed files: 2
Executed requests: 10 (17.82/s)
Succeeded files: 2 (100.0%)
Failed files: 0 (0.0%)
Duration: 561 ms

$ hurl --test hello.hurl error_assert_status.hurl
hello.hurl: Success (4 request(s) in 5 ms)
error: Assert status code
 --> error_assert_status.hurl:9:6
 |
 | GET http://localhost:8000/not_found
 | ...
 9 | HTTP 200
 | ^^^ actual value is <404>
 |

error_assert_status.hurl: Failure (1 request(s) in 2 ms)
--
Executed files: 2
Executed requests: 5 (500.0/s)
Succeeded files: 1 (50.0%)
Failed files: 1 (50.0%)
Duration: 10 ms

In test mode, files are executed in parallel to speed-ud the execution. If a sequential run is needed,
you can use --jobs 1 option to execute tests one by one.

$ hurl --test --jobs 1 *.hurl

--repeat option can be used to repeat run files and do performance check. For instance, this call
will run 1000 tests in parallel:

$ hurl --test --repeat 1000 stress.hurl

Selecting Tests

Hurl can take multiple files into inputs:

$ hurl --test test/integration/*.hurl

Or you can simply give a directory and Hurl will find files with .hurl extension recursively:

$ hurl --test test/integration/

Finally, you can use --glob option to test files that match a given pattern:

$ hurl --test --glob "test/integration/**/*.hurl"

Debugging

Debug Logs

If you need more error context, you can use --error-format long option to print HTTP bodies for
failed asserts:

$ hurl --test test/integration/a.hurl test/integration/b.hurl test/integration/c.hurl

$ hurl --test --error-format long hello.hurl error_assert_status.hurl
hello.hurl: Success (4 request(s) in 6 ms)
HTTP/1.1 404
Server: Werkzeug/3.0.3 Python/3.12.4
Date: Wed, 10 Jul 2024 15:42:41 GMT
Content-Type: text/html; charset=utf-8
Content-Length: 207
Server: Flask Server
Connection: close

<!doctype html>
<html lang=en>
<title>404 Not Found</title>
<h1>Not Found</h1>
<p>The requested URL was not found on the server. If you entered the URL manually please check your spelling and try again.</p>

Individual requests can be modified with [[Options] section]options to turn on logs for a particular
request, using verbose and very-verbose option.

With this Hurl file:

GET https://foo.com
HTTP 200

GET https://bar.com
[Options]
very-verbose: true
HTTP 200

GET https://baz.com
HTTP 200

Running hurl --test . will output debug logs for the request to https://bar.com.

--verbose / --very-verbose can also be enabled globally, for every requests of every tested files:

$ hurl --test --very-verbose .

HTTP Responses

In test mode, HTTP responses are not displayed. One way to get HTTP responses even in test
mode is to use --output option of [Options] section: --output file allows to save a particular
response to a file, while --output - allows to redirect HTTP responses to standard output.

GET http://foo.com
HTTP 200

GET https://bar.com
[Options]
output: -
HTTP 200

error: Assert status code
 --> error_assert_status.hurl:9:6
 |
 | GET http://localhost:8000/not_found
 | ...
 9 | HTTP 200
 | ^^^ actual value is <404>
 |

error_assert_status.hurl: Failure (1 request(s) in 2 ms)
--
Executed files: 2
Executed requests: 5 (454.5/s)
Succeeded files: 1 (50.0%)
Failed files: 1 (50.0%)
Duration: 11 ms

$ hurl --test .
<html><head><meta http-equiv="content-type" content="text/html;charset=utf-8">
<title>301 Moved</TITLE></head><body>
<h1>301 Moved</h1>
The document has moved

Generating Report

In the different reports, files are always referenced in the input order (which, as tests are executed in
parallel, can be different from the execution order).

HTML Report

Hurl can generate an HTML report by using the --report-html DIR option.

If the HTML report already exists, the test results will be appended to it.

The input Hurl files (HTML version) are also included and are easily accessed from the main page.

JSON Report

A JSON report can be produced by using the --report-json DIR. The report directory will contain
a report.json file, including each test file executed with --json option and a reference to each
HTTP response of the run dumped to disk.

If the JSON report already exists, it will be updated with the new test results.

JUnit Report

A JUnit report can be produced by using the --report-junit FILE option.

here.
</body></html>
/tmp/test.hurl: Success (2 request(s) in 184 ms)
--
Executed files: 1
Executed requests: 2 (10.7/s)
Succeeded files: 1 (100.0%)
Failed files: 0 (0.0%)
Duration: 187 ms

If the JUnit report already exists, it will be updated with the new test results.

TAP Report

A TAP report (Test Anything Protocol) can be produced by using the --report-tap FILE option.

If the TAP report already exists, it will be updated with the new test results.

Use Variables in Tests

To use variables in your tests, you can:

use --variable option
use --variables-file option
define environment variables, for instance HURL_foo=bar

You will find a detailed description in the Injecting Variables section of the docs.

Frequently Asked Questions

General

Why “Hurl”?

The name Hurl is a tribute to the awesome curl, with a focus on the HTTP protocol. While it may
have an informal meaning not particularly elegant, other eminent tools have set a precedent in
naming.

Yet Another Tool, I already use X

We think that Hurl has some advantages compared to similar tools.

Hurl is foremost a command line tool and should be easy to use on a local computer, or in a CI/CD
pipeline. Some tools in the same space as Hurl (Postman for instance), are GUI oriented, and we
find it less attractive than CLI. As a command line tool, Hurl can be used to get HTTP data (like curl),
but also as a test tool for HTTP sessions, or even as documentation.

Having a text based file format is another advantage. The Hurl format is simple, focused on the
HTTP domain, can serve as documentation and can be read or written by non-technical people.

For instance posting JSON data with Hurl can be done with this simple file:

POST http://localhost:3000/api/login
{
 "username": "xyz",
 "password": "xyz"
}

With curl:

curl --header "Content-Type: application/json" \
 --request POST \
 --data '{"username": "xyz","password": "xyz"}' \
 http://localhost:3000/api/login

https://testanything.org/
https://curl.haxx.se/
https://git.wiki.kernel.org/index.php/GitFaq#Why_the_.27Git.27_name.3F
https://www.postman.com/
https://curl.haxx.se/
http://localhost:4000/docs/standalone/hurl-5.0.1.html#file-format-hurl-file
https://curl.haxx.se/

Karate, a tool combining API test automation, mocking, performance-testing, has similar features but
offers also much more at a cost of an increased complexity.

Comparing Karate file format:

Scenario: create and retrieve a cat

Given url 'http://myhost.com/v1/cats'
And request { name: 'Billie' }
When method post
Then status 201
And match response == { id: '#notnull', name: 'Billie }

Given path response.id
When method get
Then status 200

And Hurl:

Scenario: create and retrieve a cat

POST http://myhost.com/v1/cats
{ "name": "Billie" }
HTTP 201
[Captures]
cat_id: jsonpath "$.id"
[Asserts]
jsonpath "$.name" == "Billie"

GET http://myshost.com/v1/cats/{{cat_id}}
HTTP 200

A key point of Hurl is to work on the HTTP domain. In particular, there is no JavaScript runtime, Hurl
works on the raw HTTP requests/responses, and not on a DOM managed by a HTML engine. For
security, this can be seen as a feature: let’s say you want to test backend validation, you want to be
able to bypass the browser or javascript validations and directly test a backend endpoint.

Finally, with no headless browser and working on the raw HTTP data, Hurl is also really reliable with
a very small probability of false positives. Integration tests with tools like Selenium can, in this
regard, be challenging to maintain.

Just use what is convenient for you. In our case, it’s Hurl!

Hurl is build on top of libcurl, but what is added?

Hurl has two main functionalities on top of curl:

1. Chain several requests:

With its captures, it enables to inject data received from a response into following requests.
CSRF tokens are typical examples in a standard web session.

2. Test HTTP responses:

With its asserts, responses can be easily tested.

Hurl benefits from the features of the libcurl against it is linked. You can check libcurl version
with hurl --version.

For instance on macOS:

$ hurl --version

https://github.com/intuit/karate
https://www.selenium.dev/
https://curl.haxx.se/
http://localhost:4000/docs/standalone/hurl-5.0.1.html#file-format-capturing-response
https://en.wikipedia.org/wiki/Cross-site_request_forgery
http://localhost:4000/docs/standalone/hurl-5.0.1.html#file-format-asserting-response

You can also check which libcurl is used.

On macOS:

On Linux:

Note that some Hurl features are dependent on libcurl capacities: for instance, if your libcurl
doesn’t support HTTP/2 Hurl won’t be able to send HTTP/2 request.

Why shouldn’t I use Hurl?

If you need a GUI. Currently, Hurl does not offer a GUI version (like Postman). While we think that it
can be useful, we prefer to focus for the time-being on the core, keeping something simple and fast.
Contributions to build a GUI are welcome.

I have a large numbers of tests, how to run just specific tests?

By convention, you can organize Hurl files into different folders or prefix them.

For example, you can split your tests into two folders critical and additional.

critical/test1.hurl
critical/test2.hurl
additional/test1.hurl
additional/test2.hurl

You can simply run your critical tests with

$ hurl --test critical/*.hurl

hurl 2.0.0 libcurl/7.79.1 (SecureTransport) LibreSSL/3.3.6 zlib/1.2.11 nghttp2/1.45.1
Features (libcurl): alt-svc AsynchDNS HSTS HTTP2 IPv6 Largefile libz NTLM NTLM_WB SPNEGO SSL UnixSockets
Features (built-in): brotli

$ which hurl
/opt/homebrew/bin/hurl
$ otool -L /opt/homebrew/bin/hurl:

/usr/lib/libxml2.2.dylib (compatibility version 10.0.0, current version 10.9.0)
/System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundation (compatibility version 150.0.0, current version 1858.112.0)
/usr/lib/libcurl.4.dylib (compatibility version 7.0.0, current version 9.0.0)
/usr/lib/libiconv.2.dylib (compatibility version 7.0.0, current version 7.0.0)
/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 1311.100.3)

$ which hurl
/root/.cargo/bin/hurl
$ ldd /root/.cargo/bin/hurl
ldd /root/.cargo/bin/hurl

linux-vdso.so.1 (0x0000ffff8656a000)
libxml2.so.2 => /usr/lib/aarch64-linux-gnu/libxml2.so.2 (0x0000ffff85fe8000)
libcurl.so.4 => /usr/lib/aarch64-linux-gnu/libcurl.so.4 (0x0000ffff85f45000)
libgcc_s.so.1 => /lib/aarch64-linux-gnu/libgcc_s.so.1 (0x0000ffff85f21000)
...
libkeyutils.so.1 => /lib/aarch64-linux-gnu/libkeyutils.so.1 (0x0000ffff82ed5000)
libffi.so.7 => /usr/lib/aarch64-linux-gnu/libffi.so.7 (0x0000ffff82ebc000)

https://www.postman.com/

How can I use my Hurl files outside Hurl?

Hurl file can be exported to a JSON file with hurlfmt. This JSON file can then be easily parsed for
converting a different format, getting ad-hoc information,...

For example, the Hurl file

GET https://example.org/api/users/1
User-Agent: Custom
HTTP 200
[Asserts]
jsonpath "$.name" == "Bob"

will be converted to JSON with the following command:

$ hurlfmt test.hurl --out json | jq
{
 "entries": [
 {
 "request": {
 "method": "GET",
 "url": "https://example.org/api/users/1",
 "headers": [
 {
 "name": "User-Agent",
 "value": "Custom"
 }
]
 },
 "response": {
 "version": "HTTP",
 "status": 200,
 "asserts": [
 {
 "query": {
 "type": "jsonpath",
 "expr": "$.name"
 },
 "predicate": {
 "type": "==",
 "value": "Bob"
 }
 }
]
 }
 }
]
}

Can I do calculation within a Hurl file?

Currently, the templating is very simple, only accessing variables. Calculations can be done
beforehand, before running the Hurl File.

For example, with date calculations, variables now and tomorrow can be used as param or expected
value.

$ TODAY=$(date '+%y%m%d')
$ TOMORROW=$(date '+%y%m%d' -d"+1days")
$ hurl --variable "today=$TODAY" --variable "tomorrow=$TOMORROW" test.hurl

You can also use environment variables that begins with HURL_ to inject data in an Hurl file. For
instance, to inject today and tomorrow variables:

$ export HURL_today=$(date '+%y%m%d')
$ export HURL_tomorrow=$(date '+%y%m%d' -d"+1days")
$ hurl test.hurl

You can also use filters to process HTTP responses in asserts and captures.

macOS

How can I use a custom libcurl (from Homebrew by instance)?

No matter how you’ve installed Hurl (using the precompiled binary for macOS or with Homebrew)
Hurl is linked against the built-in system libcurl. If you want to use another libcurl (for instance, if
you’ve installed curl with Homebrew and want Hurl to use Homebrew’s libcurl), you can patch Hurl
with the following command:

For instance:

$ sudo install_name_tool -change /usr/lib/libcurl.4.dylib PATH_TO_CUSTOM_LIBCURL PATH_TO_HURL_BIN

/usr/local/opt/curl/lib/libcurl.4.dylib is installed by `brew install curl`
$ sudo install_name_tool -change /usr/lib/libcurl.4.dylib /usr/local/opt/curl/lib/libcurl.4.dylib /usr/local/bin/hurl

http://localhost:4000/docs/standalone/hurl-5.0.1.html#file-format-filters
https://brew.sh/

File Format

Hurl File

Character Encoding

Hurl file should be encoded in UTF-8, without a byte order mark at the beginning (while Hurl ignores
the presence of a byte order mark rather than treating it as an error)

File Extension

Hurl file extension is .hurl

Comments

Comments begin with # and continue until the end of line. Hurl file can serve as a documentation for
HTTP based workflows so it can be useful to be very descriptive.

Special Characters in Strings

String can include the following special characters:

The escaped special characters " (double quotation mark), \ (backslash), \b (backspace), \f
(form feed), \n (line feed), \r (carriage return), and \t (horizontal tab)
An arbitrary Unicode scalar value, written as \u{n}, where n is a 1–8 digit hexadecimal number

GET https://example.org/api
HTTP 200
The following assert are equivalent:
[Asserts]
jsonpath "$.slideshow.title" == "A beautiful ✈!"
jsonpath "$.slideshow.title" == "A beautiful \u{2708}!"

In some case, (in headers value, etc..), you will also need to escape # to distinguish it from a
comment. In the following example:

GET https://example.org/api
x-token: BEEF \#STEACK # Some comment
HTTP 200

A very simple Hurl file
with tasty comments...
GET https://www.sample.net
x-app: MY_APP # Add a dummy header
HTTP 302 # Check that we have a redirection
[Asserts]
header "Location" exists
header "Location" contains "login" # Check that we are redirected to the login page

We’re sending a header x-token with value BEEF #STEACK

Entry

Definition

A Hurl file is a list of entries, each entry being a mandatory request, optionally followed by a
response.

Responses are not mandatory, a Hurl file consisting only of requests is perfectly valid. To sum up,
responses can be used to capture values to perform subsequent requests, or add asserts to HTTP
responses.

Example

First, test home title.
GET https://acmecorp.net
HTTP 200
[Asserts]
xpath "normalize-space(//head/title)" == "Hello world!"

Get some news, response description is optional
GET https://acmecorp.net/news

Do a POST request without CSRF token and check
that status code is Forbidden 403
POST https://acmecorp.net/contact
[FormParams]
default: false
email: john.doe@rookie.org
number: 33611223344
HTTP 403

Description

Options

Options specified on the command line apply to every entry in an Hurl file. For instance, with --
location option, every entry of a given file will follow redirection:

$ hurl --location foo.hurl

You can use an [[Options] section]options to set option only for a specified request. For instance,
in this Hurl file, the second entry will follow location (so we can test the status code to be 200
instead of 301).

GET https://google.fr
HTTP 301

GET https://google.fr
[Options]
location: true
HTTP 200

GET https://google.fr

http://localhost:4000/docs/standalone/hurl-5.0.1.html#file-format-request
http://localhost:4000/docs/standalone/hurl-5.0.1.html#file-format-response
http://localhost:4000/docs/standalone/hurl-5.0.1.html#file-format-capturing-response
http://localhost:4000/docs/standalone/hurl-5.0.1.html#file-format-asserting-response

HTTP 301

You can use the [Options](#getting-started-manual-options) section to log a specific entry:

... previous entries

GET https://api.example.org
[Options]
very-verbose: true
HTTP 200

... next entries

Cookie storage

Requests in the same Hurl file share the cookie storage, enabling, for example, session based
scenario.

Redirects

By default, Hurl doesn’t follow redirection. To effectively run a redirection, entries should describe
each step of the redirection, allowing insertion of asserts in each response.

First entry, test the redirection (status code and 'Location' header)
GET https://google.fr
HTTP 301
Location: https://www.google.fr/

Second entry, the 200 OK response
GET https://www.google.fr
HTTP 200

Alternatively, one can use --location / --location-trusted options to force redirection to be
followed. In this case, asserts are executed on the last received response. Optionally, the number of
redirections can be limited with --max-redirs.

Running hurl --location google.hurl
GET https://google.fr
HTTP 200

Finally, you can force redirection on a particular request with an [[Options] section]options and
the--location / --location-trusted options:

GET https://google.fr
[Options]
location-trusted: true
HTTP 200

Retry

Every entry can be retried upon asserts, captures or runtime errors. Retries allow polling scenarios
and effective runs under flaky conditions. Asserts can be explicit (with an [[Asserts]
section]asserts), or implicit (like headers or status code).

Retries can be set globally for every request (see --retry and --retry-interval), or activated on
a particular request with an [[Options] section]options.

http://localhost:4000/docs/standalone/hurl-5.0.1.html#file-format-response-asserts
http://localhost:4000/docs/standalone/hurl-5.0.1.html#file-format-response-headers
http://localhost:4000/docs/standalone/hurl-5.0.1.html#file-format-response-version-status

For example, in this Hurl file, first we create a new job then we poll the new job until it’s completed:

Create a new job
POST http://api.example.org/jobs
HTTP 201
[Captures]
job_id: jsonpath "$.id"
[Asserts]
jsonpath "$.state" == "RUNNING"

Pull job status until it is completed
GET http://api.example.org/jobs/{{job_id}}
[Options]
retry: 10 # maximum number of retry, -1 for unlimited
retry-interval: 300ms
HTTP 200
[Asserts]
jsonpath "$.state" == "COMPLETED"

Control flow

In [Options](#getting-started-manual-options) section, skip and repeat can be used to
control flow of execution:

skip: true/false skip this request and execute the next one unconditionally,
repeat: N loop the request N times. If there are assert or runtime errors, the requests
execution is stopped.

This request will be played exactly 3 times
GET https://example.org/foo
[Options]
repeat: 3
HTTP 200

This request is skipped
GET https://example.org/foo
[Options]
skip: true
HTTP 200

Additionally, a delay can be inserted between requests, to add a delay before execution of a
request.

A 5 seconds delayed request
GET https://example.org/foo
[Options]
delay: 5s
HTTP 200

delay and repeat can also be used globally as command line options:

$ hurl --delay 500ms --repeat 3 foo.hurl

For complete reference, below is a diagram for the executed entries.

START

Entry
to run?

Eval
entry options

YES

SUCCESS NO

Skip?

Delay?

NO

Sleep delay

YES

Run HTTP
requests

NO

Eval errors

Eval captures

Errors?

Increment
repeat index

NO

Sleep
retry interval

YESRetry?

YES

ERROR

NO

Repeat?YES Increment
entry indexNO

YES

Request

Definition

Request describes an HTTP request: a mandatory method and URL, followed by optional headers.

Then, query parameters, form parameters, multipart form data, cookies, basic authentication and
options can be used to configure the HTTP request.

Finally, an optional body can be used to configure the HTTP request body.

Example

GET https://example.org/api/dogs?id=4567
User-Agent: My User Agent
Content-Type: application/json
[BasicAuth]
alice: secret

Structure

PUT https://sample.net

accept: */*
x-powered-by: Express
user-agent: Test

[QueryStringParams]
...
[FormParams]
...
[BasicAuth]
...
[Cookies]
...
...
...

{
 "type": "FOO",
 "value": 356789,
 "ordered": true,
 "index": 10
}

Method and URL (mandatory)

HTTP request headers (optional)

Query strings, form params, cookies, authentication ...
(optional sections, unordered)

HTTP request body (optional)

Headers, if present, follow directly after the method and URL. This allows Hurl format to ‘look like’
the real HTTP format. Contrary to HTTP headers, other parameters are defined in sections
([Cookies], [QueryStringParams], [FormParams] etc...) These sections are not ordered and can
be mixed in any way:

GET https://example.org/api/dogs
User-Agent: My User Agent
[QueryStringParams]
id: 4567
order: newest
[BasicAuth]
alice: secret

GET https://example.org/api/dogs
User-Agent: My User Agent
[BasicAuth]
alice: secret
[QueryStringParams]
id: 4567
order: newest

The last optional part of a request configuration is the request body. Request body must be the last
parameter of a request (after headers and request sections). Like headers, body have no explicit
marker:

POST https://example.org/api/dogs?id=4567

User-Agent: My User Agent
{
 "name": "Ralphy"
}

Description

Method

Mandatory HTTP request method, usually one of GET, HEAD, POST, PUT, DELETE, CONNECT, OPTIONS,
TRACE and PATCH.

Other methods can be used like QUERY with the constraint of using only uppercase chars.

URL

Mandatory HTTP request URL.

URL can contain query parameters, even if using a query parameters section is preferred.

A request with URL containing query parameters.
GET https://example.org/forum/questions/?search=Install%20Linux&order=newest

A request with query parameters section, equivalent to the first request.
GET https://example.org/forum/questions/
[QueryStringParams]
search: Install Linux
order: newest

Query parameters in query parameter section are not URL encoded.

When query parameters are present in the URL and in a query parameters section, the resulting
request will have both parameters.

Headers

Optional list of HTTP request headers.

A header consists of a name, followed by a : and a value.

Headers directly follow URL, without any section name, contrary to query parameters, form
parameters or cookies

Note that a header usually doesn’t start with double quotes. If a header value starts with double
quotes, double quotes will be part of the header value:

PATCH https://example.org/file.txt
If-Match: "e0023aa4e"

GET https://example.org/news
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.14; rv:70.0) Gecko/20100101 Firefox/70.0
Accept: */*
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate, br
Connection: keep-alive

If-Match request header will be sent will the following value "e0023aa4e" (started and ended with
double quotes).

Headers must follow directly after the method and URL.

Query parameters

Optional list of query parameters.

A query parameter consists of a field, followed by a : and a value. The query parameters section
starts with [QueryStringParams]. Contrary to query parameters in the URL, each value in the
query parameters section is not URL encoded.

If there are any parameters in the URL, the resulted request will have both parameters.

Form parameters

A form parameters section can be used to send data, like HTML form.

This section contains an optional list of key values, each key followed by a : and a value. Key
values will be encoded in key-value tuple separated by ‘&’, with a ‘=’ between the key and the value,
and sent in the body request. The content type of the request is application/x-www-form-
urlencoded. The form parameters section starts with [FormParams].

POST https://example.org/contact
[FormParams]
default: false
token: {{token}}
email: john.doe@rookie.org
number: 33611223344

Form parameters section can be seen as syntactic sugar over body section (values in form
parameters section are not URL encoded.). A oneline string body could be used instead of a forms
parameters section.

Run a POST request with form parameters section:
POST https://example.org/test
[FormParams]
name: John Doe
key1: value1

Run the same POST request with a body section:
POST https://example.org/test
Content-Type: application/x-www-form-urlencoded
`name=John%20Doe&key1=value1`

When both body section and form parameters section are present, only the body section is taken
into account.

Multipart Form Data

GET https://example.org/news
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.14; rv:70.0) Gecko/20100101 Firefox/70.0
[QueryStringParams]
order: newest
search: {{custom-search}}
count: 100

https://developer.mozilla.org/en-US/docs/Learn/Forms

A multipart form data section can be used to send data, with key / value and file content (see
multipart/form-data on MDN).

The form parameters section starts with [MultipartFormData].

POST https://example.org/upload
[MultipartFormData]
field1: value1
field2: file,example.txt;
One can specify the file content type:
field3: file,example.zip; application/zip

Files are relative to the input Hurl file, and cannot contain implicit parent directory (..). You can use
--file-root option to specify the root directory of all file nodes.

Content type can be specified or inferred based on the filename extension:

.gif: image/gif,

.jpg: image/jpeg,

.jpeg: image/jpeg,

.png: image/png,

.svg: image/svg+xml,

.txt: text/plain,

.htm: text/html,

.html: text/html,

.pdf: application/pdf,

.xml: application/xml

By default, content type is application/octet-stream.

As an alternative to a [MultipartFormData] section, multipart forms can also be sent with a
multiline string body:

POST https://example.org/upload
Content-Type: multipart/form-data; boundary="boundary"
```
--boundary
Content-Disposition: form-data; name="key1"

value1
--boundary
Content-Disposition: form-data; name="upload1"; filename="data.txt"
Content-Type: text/plain

Hello World!
--boundary
Content-Disposition: form-data; name="upload2"; filename="data.html"
Content-Type: text/html

<div>Hello <b>World</b>!</div>
--boundary--
```

When using a multiline string body to send a multipart form data, files content must be inlined in
the Hurl file.

Cookies

Optional list of session cookies for this request.

A cookie consists of a name, followed by a : and a value. Cookies are sent per request, and are not
added to the cookie storage session, contrary to a cookie set in a header response. (for instance

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/POST

Set-Cookie: theme=light). The cookies section starts with [Cookies].

GET https://example.org/index.html
[Cookies]
theme: light
sessionToken: abc123

Cookies section can be seen as syntactic sugar over corresponding request header.

Run a GET request with cookies section:
GET https://example.org/index.html
[Cookies]
theme: light
sessionToken: abc123

Run the same GET request with a header:
GET https://example.org/index.html
Cookie: theme=light; sessionToken=abc123

Basic Authentication

A basic authentication section can be used to perform basic authentication.

Username is followed by a : and a password. The basic authentication section starts with
[BasicAuth]. Username and password are not base64 encoded.

Perform basic authentication with login `bob` and password `secret`.
GET https://example.org/protected
[BasicAuth]
bob: secret

Spaces surrounded username and password are trimmed. If you really want a space in your
password (!!), you could use Hurl unicode literals \u{20}.

This is equivalent (but simpler) to construct the request with a Authorization header:

Basic authentication allows per request authentication. If you want to add basic authentication to all
the requests of a Hurl file you can use -u/--user option.

Body

Optional HTTP body request.

If the body of the request is a JSON string or a XML string, the value can be directly inserted without
any modification. For a text based body that is neither JSON nor XML, one can use multiline string
body that starts with ``` and ends with ```. Multiline string body support “language hint” and can be
used to create GraphQL queries.

For a precise byte control of the request body, Base64 encoded string, hexadecimal string or
included file can be used to describe exactly the body byte content.

You can set a body request even with a GET body, even if this is not a common practice.

Authorization header value can be computed with `echo -n 'bob:secret' | base64`
GET https://example.org/protected
Authorization: Basic Ym9iOnNlY3JldA==

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization
https://www.json.org/
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/Base64

The body section must be the last section of the request configuration.

JSON body

JSON request body is used to set a literal JSON as the request body.

Create a new doggy thing with JSON body:
POST https://example.org/api/dogs
{
 "id": 0,
 "name": "Frieda",
 "picture": "images/scottish-terrier.jpeg",
 "age": 3,
 "breed": "Scottish Terrier",
 "location": "Lisco, Alabama"
}

JSON request body can be templatized with variables:

Create a new catty thing with JSON body:
POST https://example.org/api/cats
{
 "id": 42,
 "lives": {{lives_count}},
 "name": "{{name}}"
}

When using JSON request body, the content type application/json is automatically set.

JSON request body can be seen as syntactic sugar of multiline string body with json identifier:

Create a new doggy thing with JSON body:
POST https://example.org/api/dogs
```json
{
    "id": 0,
    "name": "Frieda",
    "picture": "images/scottish-terrier.jpeg",
    "age": 3,
    "breed": "Scottish Terrier",
    "location": "Lisco, Alabama"
}
```

XML body

XML request body is used to set a literal XML as the request body.

Create a new soapy thing XML body:
POST https://example.org/InStock
Content-Type: application/soap+xml; charset=utf-8
Content-Length: 299
SOAPAction: "http://www.w3.org/2003/05/soap-envelope"
<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope" xmlns:m="http://example.net">
 <soap:Header></soap:Header>
 <soap:Body>
 <m:GetStockPrice>
 <m:StockName>GOOG</m:StockName>
 </m:GetStockPrice>
 </soap:Body>
</soap:Envelope>

XML request body can be seen as syntactic sugar of multiline string body with xml identifier:

Contrary to JSON body, the succinct syntax of XML body can not use variables. If you need to
use variables in your XML body, use a simple multiline string body with variables.

GraphQL query

GraphQL query uses multiline string body with graphql identifier:

POST https://example.org/starwars/graphql
```graphql
{
  human(id: "1000") {
    name
    height(unit: FOOT)
  }
}
```

GraphQL query body can use GraphQL variables:

POST https://example.org/starwars/graphql
```graphql
query Hero($episode: Episode, $withFriends: Boolean!) {
  hero(episode: $episode) {
    name
    friends @include(if: $withFriends) {
      name
    }
  }
}

variables {
  "episode": "JEDI",
  "withFriends": false
}
```

GraphQL query, as every multiline string body, can use Hurl variables.

POST https://example.org/starwars/graphql
```graphql

# Create a new soapy thing XML body:
POST https://example.org/InStock
Content-Type: application/soap+xml; charset=utf-8
Content-Length: 299
SOAPAction: "http://www.w3.org/2003/05/soap-envelope"
```xml
<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope" xmlns:m="http://example.net">
 <soap:Header></soap:Header>
 <soap:Body>
 <m:GetStockPrice>
 <m:StockName>GOOG</m:StockName>
 </m:GetStockPrice>
 </soap:Body>
</soap:Envelope>
```

https://graphql.org/learn/queries/#variables


{
  human(id: "{{human_id}}") {
    name
    height(unit: FOOT)
  }
}
```

Hurl variables and GraphQL variables can be mixed in the same body.

Multiline string body

For text based body that are neither JSON nor XML, one can use multiline string, started and ending
with ```.

POST https://example.org/models
```
Year,Make,Model,Description,Price
1997,Ford,E350,"ac, abs, moon",3000.00
1999,Chevy,"Venture ""Extended Edition""","",4900.00
1999,Chevy,"Venture ""Extended Edition, Very Large""",,5000.00
1996,Jeep,Grand Cherokee,"MUST SELL! air, moon roof, loaded",4799.00
```

The standard usage of a multiline string is:

```
line1
line2
line3
```

is evaluated as “line1\nline2\nline3\n”.

Multiline string body can use language identifier, like json, xml or graphql. Depending on the
language identifier, an additional ‘Content-Type’ request header is sent, and the real body (bytes
sent over the wire) can be different from the raw multiline text.

POST https://example.org/api/dogs
```json
{
    "id": 0,
    "name": "Frieda",
}
```

Oneline string body

For text based body that do not contain newlines, one can use oneline string, started and ending
with `.

POST https://example.org/helloworld
`Hello world!`

Base64 body

Base64 body is used to set binary data as the request body.

Base64 body starts with base64, and end with ;. MIME’s Base64 encoding is supported (newlines
and white spaces may be present anywhere but are to be ignored on decoding), and = padding
characters might be added.

POST https://example.org
Some random comments before body
base64,TG9yZW0gaXBzdW0gZG9sb3Igc2l0IGFtZXQsIGNvbnNlY3RldHVyIG
FkaXBpc2NpbmcgZWxpdC4gSW4gbWFsZXN1YWRhLCBuaXNsIHZlbCBkaWN0dW0g
aGVuZHJlcml0LCBlc3QganVzdG8gYmliZW5kdW0gbWV0dXMsIG5lYyBydXRydW
0gdG9ydG9yIG1hc3NhIGlkIG1ldHVzLiA=;

Hex body

Hex body is used to set binary data as the request body.

Hex body starts with hex, and end with ;.

PUT https://example.org
Send a café, encoded in UTF-8
hex,636166c3a90a;

File body

To use the binary content of a local file as the body request, file body can be used. File body starts
with file, and ends with ;`

POST https://example.org
Some random comments before body
file,data.bin;

File are relative to the input Hurl file, and cannot contain implicit parent directory (..). You can use
--file-root option to specify the root directory of all file nodes.

Options

Options used to execute this request.

Options such as --location, --verbose, --insecure can be used at the command line and
applied to every request of an Hurl file. An [Options] section can be used to apply option to only
one request (without passing options to the command line), while other requests are unaffected.

GET https://example.org
An options section, each option is optional and applied only to this request...
[Options]
aws-sigv4: aws:amz:sts # generate AWS SigV4 Authorization header
cacert: /etc/cert.pem # custom certificate file
compressed: true # request a compressed response
delay: 3s # delay for this request
http3: true # use HTTP/3 protocol version
insecure: true # allow insecure SSL connections and transfers
ipv6: true # use IPv6 addresses
location: true # follow redirection for this request
max-redirs: 10 # maximum number of redirections
output: out.html # dump the response to this file
path-as-is: true # do not handle sequences of /../ or /./ in URL path
retry: 10 # number of retry if HTTP/asserts errors
retry-interval: 500ms # interval between retry
skip: false # skip this request
unix-socket: sock # use Unix socket for transfer
user: bob:secret # use basic authentication
proxy: my.proxy:8012 # define proxy (host:port where host can be an IP address)
variable: country=Italy # define variable country

Variable defined in an [Options] section are defined also for the next entries. This is the
exception, all other options are defined only for the current request.

Response

Definition

Responses can be used to capture values to perform subsequent requests, or add asserts to HTTP
responses. Response on requests are optional, a Hurl file can just consist of a sequence of
requests.

A response describes the expected HTTP response, with mandatory version and status, followed by
optional headers, captures, asserts and body. Assertions in the expected HTTP response describe
values of the received HTTP response. Captures capture values from the received HTTP response
and populate a set of named variables that can be used in the following entries.

Example

GET https://example.org
HTTP 200
Last-Modified: Wed, 21 Oct 2015 07:28:00 GMT
[Asserts]
xpath "normalize-space(//head/title)" startsWith "Welcome"
xpath "//li" count == 18

Structure

HTTP 200

content-length: 206
accept-ranges: bytes
user-agent: Test

[Captures]
...
[Asserts]
...

{
 "type": "FOO",
 "value": 356789,
 "ordered": true,
 "index": 10
}

Version and status (mandatory if response present)

HTTP response headers (optional)

Captures and asserts (optional sections, unordered)

HTTP response body (optional)

Capture and Assertion

With the response section, one can optionally capture value from headers, body, or add assert on
status code, body or headers.

variable: planet=Earth # define variable planet
verbose: true # allow verbose output
very-verbose: true # allow more verbose output

http://localhost:4000/docs/standalone/hurl-5.0.1.html#file-format-request
http://localhost:4000/docs/standalone/hurl-5.0.1.html#file-format-capturing-response
http://localhost:4000/docs/standalone/hurl-5.0.1.html#file-format-asserting-response

Body compression

Hurl outputs the raw HTTP body to stdout by default. If response body is compressed (using br,
gzip, deflate), the binary stream is output, without any modification. One can use --compressed
option to request a compressed response and automatically get the decompressed body.

Captures and asserts work automatically on the decompressed body, so you can request
compressed data (using Accept-Encoding header by example) and add assert and captures on the
decoded body as if there weren’t any compression.

Timings

HTTP response timings are exposed through Hurl structured output (see --json), HTML report (see
--report-html) and JSON report (see --report-json).

On each response, libcurl response timings are available:

time_namelookup: the time it took from the start until the name resolving was completed. You
can use --resolve to exclude DNS performance from the measure.
time_connect: The time it took from the start until the TCP connect to the remote host (or
proxy) was completed.
time_appconnect: The time it took from the start until the SSL/SSH/etc connect/handshake to
the remote host was completed. The client is then ready to send its HTTP GET request.
time_starttransfer: The time it took from the start until the first byte was just about to be
transferred (just before Hurl reads the first byte from the network). This includes
time_pretransfer and also the time the server needed to calculate the result.
time_total: The total time that the full operation lasted.

All timings are in microsecond.

Client DNS Server

Web Server

DNS
Request

DNS
Response

SYN

SYN/ACK

ACK
ClientHello

ServerHello
Certificate

ClientKeyExch,
ChangeCypherSpec

ChangeCyperSpec
Finished

HTTP GET

Response

FIN

0 s

1.510 stime_namelookup

1.757 stime_connect

2.256 stime_appconnect
2.259 stime_pretransfer

2.506 stime_starttransfer

3.001 stime_total

DNS resolver
e.g. 1.1.1.1

DNS
Lookup

TCP
Handshake

SSL
Handshake

Wait

Data
Transfer

Web
Server

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept-Encoding
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept-Encoding

Courtesy of CloudFlare

Capturing Response

Captures

Captures are optional values that are extracted from the HTTP response and stored in a named
variable. These captures may be the response status code, part of or the entire the body, and
response headers.

Captured variables can be accessed through a run session; each new value of a given variable
overrides the last value.

Captures can be useful for using data from one request in another request, such as when working
with CSRF tokens. Variables in a Hurl file can be created from captures or injected into the session.

An example to show how to pass a CSRF token
from one request to another:

First GET request to get CSRF token value:
GET https://example.org
HTTP 200
Capture the CSRF token value from html body.
[Captures]
csrf_token: xpath "normalize-space(//meta[@name='_csrf_token']/@content)"

Do the login !
POST https://acmecorp.net/login?user=toto&password=1234
X-CSRF-TOKEN: {{csrf_token}}
HTTP 302

Structure of a capture:

 :

A capture consists of a variable name, followed by : and a query. Captures section starts with
[Captures].

Query

Queries are used to extract data from an HTTP response.

A query can be of the following type:

status
header
url
cookie
body
bytes
xpath
jsonpath
regex
variable
duration

my_var

variable

xpath "string(//h1)"

query

https://blog.cloudflare.com/a-question-of-timing/
https://en.wikipedia.org/wiki/Cross-site_request_forgery

certificate

Extracted data can then be further refined using filters.

Status capture

Capture the received HTTP response status code. Status capture consists of a variable name,
followed by a :, and the keyword status.

GET https://example.org
HTTP 200
[Captures]
my_status: status

Header capture

Capture a header from the received HTTP response headers. Header capture consists of a variable
name, followed by a :, then the keyword header and a header name.

POST https://example.org/login
[FormParams]
user: toto
password: 12345678
HTTP 302
[Captures]
next_url: header "Location"

URL capture

Capture the last fetched URL. This is most meaningful if you have told Hurl to follow redirection (see
[[Options] section]options or --location option). URL capture consists of a variable name,
followed by a :, and the keyword url.

GET https://example.org/redirecting
[Options]
location: true
HTTP 200
[Captures]
landing_url: url

Cookie capture

Capture a Set-Cookie header from the received HTTP response headers. Cookie capture consists
of a variable name, followed by a :, then the keyword cookie and a cookie name.

GET https://example.org/cookies/set
HTTP 200
[Captures]
session-id: cookie "LSID"

Cookie attributes value can also be captured by using the following format: <cookie-name>
[cookie-attribute]. The following attributes are supported: Value, Expires, Max-Age, Domain,
Path, Secure, HttpOnly and SameSite.

GET https://example.org/cookies/set
HTTP 200
[Captures]
value1: cookie "LSID"

http://localhost:4000/docs/standalone/hurl-5.0.1.html#file-format-capturing-response-certificate-capture
http://localhost:4000/docs/standalone/hurl-5.0.1.html#file-format-filters
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie

value2: cookie "LSID[Value]" # Equivalent to the previous capture
expires: cookie "LSID[Expires]"
max-age: cookie "LSID[Max-Age]"
domain: cookie "LSID[Domain]"
path: cookie "LSID[Path]"
secure: cookie "LSID[Secure]"
http-only: cookie "LSID[HttpOnly]"
same-site: cookie "LSID[SameSite]"

Body capture

Capture the entire body (decoded as text) from the received HTTP response. The encoding used to
decode the body is based on the charset value in the Content-Type header response.

GET https://example.org/home
HTTP 200
[Captures]
my_body: body

If the Content-Type doesn’t include any encoding hint, a decode filter can be used to explicitly
decode the body response bytes.

Our HTML response is encoded using GB 2312.
But, the 'Content-Type' HTTP response header doesn't precise any charset,
so we decode explicitly the bytes.
GET https://example.org/cn
HTTP 200
[Captures]
my_body: bytes decode "gb2312"

Bytes capture

Capture the entire body (as a raw bytestream) from the received HTTP response

GET https://example.org/data.bin
HTTP 200
[Captures]
my_data: bytes

XPath capture

Capture a XPath query from the received HTTP body decoded as a string. Currently, only XPath 1.0
expression can be used.

GET https://example.org/home
Capture the identifier from the dom node <div id="pet0">5646eaf23</div
HTTP 200
[Captures]
ped-id: xpath "normalize-space(//div[@id='pet0'])"

Open the captured page.
GET https://example.org/home/pets/{{pet-id}}
HTTP 200

XPath captures are not limited to node values (like string, or boolean); any valid XPath can be
captured and asserted with variable asserts.

Test that the XML endpoint return 200 pets

https://en.wikipedia.org/wiki/XPath

GET https://example.org/api/pets
HTTP 200
[Captures]
pets: xpath "//pets"
[Asserts]
variable "pets" count == 200

XPath expression can also be evaluated against part of the body with a xpath filter:

GET https://example.org/home_cn
HTTP 200
[Captures]
ped-id: bytes decode "gb2312" xpath "normalize-space(//div[@id='pet0'])"

JSONPath capture

Capture a JSONPath query from the received HTTP body.

POST https://example.org/api/contact
[FormParams]
token: {{token}}
email: toto@rookie.net
HTTP 200
[Captures]
contact-id: jsonpath "$['id']"

Explain that the value selected by the JSONPath is coerced to a string when only one node is
selected.

As with XPath captures, JSONPath captures can be anything from string, number, to object and
collections. For instance, if we have a JSON endpoint that returns the following JSON:

{
 "a_null": null,
 "an_object": {
 "id": "123"
 },
 "a_list": [
 1,
 2,
 3
],
 "an_integer": 1,
 "a float": 1.1,
 "a_bool": true,
 "a_string": "hello"
}

We can capture the following paths:

GET https://example.org/captures-json
HTTP 200
[Captures]
an_object: jsonpath "$['an_object']"
a_list: jsonpath "$['a_list']"
a_null: jsonpath "$['a_null']"
an_integer: jsonpath "$['an_integer']"
a_float: jsonpath "$['a_float']"
a_bool: jsonpath "$['a_bool']"
a_string: jsonpath "$['a_string']"

https://goessner.net/articles/JsonPath/

all: jsonpath "$"

Regex capture

Capture a regex pattern from the HTTP received body, decoded as text.

GET https://example.org/helloworld
HTTP 200
[Captures]
id_a: regex "id_a:([0-9]+)"
id_b: regex "id_b:(\\d+)" # pattern using double quote
id_c: regex /id_c:(\d+)/ # pattern using forward slash
name: regex "Hello ([a-zA-Z]+)"

The regex pattern must have at least one capture group, otherwise the capture will fail. When the
pattern is a double-quoted string, metacharacters beginning with a backslash in the pattern (like \d,
\s) must be escaped; literal pattern enclosed by / can also be used to avoid metacharacters
escaping.

Variable capture

Capture the value of a variable into another.

GET https://example.org/helloworld
HTTP 200
[Captures]
in: body
name: variable "in"

Duration capture

Capture the response time of the request in ms.

GET https://example.org/helloworld
HTTP 200
[Captures]
duration_in_ms: duration

SSL certificate capture

Capture the SSL certificate properties. Certificate capture consists of the keyword certificate,
followed by the certificate attribute value.

The following attributes are supported: Subject, Issuer, Start-Date, Expire-Date and Serial-
Number.

GET https://example.org
HTTP 200
[Captures]
cert_subject: certificate "Subject"
cert_issuer: certificate "Issuer"
cert_expire_date: certificate "Expire-Date"
cert_serial_number: certificate "Serial-Number"

Asserting Response

Asserts

Asserts are used to test various properties of an HTTP response. Asserts can be implicits (such as
version, status, headers) or explicit within an [Asserts] section. The delimiter of the request /
response is HTTP <STATUS-CODE>: after this delimiter, you’ll find the implicit asserts, then an
[Asserts] section with all the explicit checks.

Implicit asserts

Version - Status

Expected protocol version and status code of the HTTP response.

Protocol version is one of HTTP/1.0, HTTP/1.1, HTTP/2, HTTP/3 or HTTP; HTTP describes any
version. Note that there are no status text following the status code.

GET https://example.org/404.html
HTTP 404

Wildcard keywords HTTP and * can be used to disable tests on protocol version and status:

GET https://example.org/api/pets
HTTP *
Check that response status code is > 400 and <= 500
[Asserts]
status > 400
status <= 500

While HTTP/1.0, HTTP/1.1, HTTP/2 and HTTP/3 explicitly check HTTP version:

Check that our server responds with HTTP/2
GET https://example.org/api/pets
HTTP/2 200

Headers

Optional list of the expected HTTP response headers that must be in the received response.

A header consists of a name, followed by a : and a value.

For each expected header, the received response headers are checked. If the received header is
not equal to the expected, or not present, an error is raised. The comparison is case-insensitive for
the name: expecting a Content-Type header is equivalent to a content-type one. Note that the
expected headers list is not fully descriptive: headers present in the response and not in the
expected list doesn’t raise error.

GET https://api/example.org/cats
HTTP 200
Content-Type: application/json; charset=utf-8 # Implicit assert on Content-Type Header
[Asserts] # Explicit asserts section
bytes count == 120
header "Content-Type" contains "utf-8"
jsonpath "$.cats" count == 49
jsonpath "$.cats[0].name" == "Felix"
jsonpath "$.cats[0].lives" == 9

Check that user toto is redirected to home after login.
POST https://example.org/login
[FormParams]
user: toto
password: 12345678
HTTP 302
Location: https://example.org/home

Quotes in the header value are part of the value itself.

This is used by the ETag Header ETag: W/"<etag_value>" ETag: "<etag_value>"

Testing duplicated headers is also possible.

For example with the Set-Cookie header:

Set-Cookie: theme=light
Set-Cookie: sessionToken=abc123; Expires=Wed, 09 Jun 2021 10:18:14 GMT

You can either test the two header values:

GET https://example.org/index.html
Host: example.net
HTTP 200
Set-Cookie: theme=light
Set-Cookie: sessionToken=abc123; Expires=Wed, 09 Jun 2021 10:18:14 GMT

Or only one:

GET https://example.org/index.html
Host: example.net
HTTP 200
Set-Cookie: theme=light

If you want to test specifically the number of headers returned for a given header name, or if you
want to test header value with predicates (like startsWith, contains, exists) you can use the
explicit header assert.

Explicit asserts

Optional list of assertions on the HTTP response within an [Asserts] section. Assertions can
describe checks on status code, on the received body (or part of it) and on response headers.

Structure of an assert:

 jsonpath "$.book"

query

contains

predicate
type

"Dune"

predicate
value

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag

An assert consists of a query followed by a predicate. The format of the query is shared with
captures, and can be one of :

status
header
url
cookie
body
bytes
xpath
jsonpath
regex
sha256
md5
variable
duration
certificate

Queries are used to extract data from the HTTP response. Queries, in asserts and in captures, can
be refined with filters, like [count]count to add tests on collections sizes.

Predicates

Predicates consist of a predicate function and a predicate value. Predicate functions are:

Predicate Description Example

==
Query and
predicate value are
equal

jsonpath "$.book" == "Dune"

!=
Query and
predicate value are
different

jsonpath "$.color" != "red"

>
Query number is
greater than
predicate value

jsonpath "$.year" > 1978

>=

Query number is
greater than or
equal to the
predicate value

jsonpath "$.year" >= 1978

<
Query number is
less than that
predicate value

jsonpath "$.year" < 1978

<=

Query number is
less than or equal
to the predicate
value

jsonpath "$.year" <= 1978

startsWith

Query starts with
the predicate value
Value is string or a

jsonpath "$.movie" startsWith "The"

bytes startsWith hex,efbbbf;

body

query

matches

predicate
type

/\d{4}-\d{2}-\d{2}/

predicate value

http://localhost:4000/docs/standalone/hurl-5.0.1.html#file-format-filters

Each predicate can be negated by prefixing it with not (for instance, not contains or not exists)

A predicate value is typed, and can be a string, a boolean, a number, a bytestream, null or a
collection. Note that "true" is a string, whereas true is a boolean.

binary content

endsWith

Query ends with the
predicate value
Value is string or a
binary content

jsonpath "$.movie" endsWith "Back"

bytes endsWith hex,ab23456;

contains

Query contains the
predicate value
Value is string or a
binary content

jsonpath "$.movie" contains "Empire"

bytes contains hex,beef;

includes
Query collections
includes the
predicate value

jsonpath "$.nooks" includes "Dune"

matches

Part of the query
string matches the
regex pattern
described by the
predicate value

jsonpath "$.release" matches "\\d{4}"

jsonpath "$.release" matches /\d{4}/

exists
Query returns a
value

jsonpath "$.book" exists

isBoolean
Query returns a
boolean jsonpath "$.succeeded" isBoolean

isCollection
Query returns a
collection

jsonpath "$.books" isCollection

isEmpty
Query returns an
empty collection jsonpath "$.movies" isEmpty

isFloat
Query returns a
float jsonpath "$.height" isFloat

isInteger
Query returns an
integer

jsonpath "$.count" isInteger

isIsoDate

Query string returns
a [RFC 3339] date
(YYYY-MM-
DDTHH:mm:ss.sssZ)

jsonpath "$.publication_date" isIsoDate

isNumber
Query returns an
integer or a float

jsonpath "$.count" isNumber

isString
Query returns a
string

jsonpath "$.name" isString

jsonpath "$.book"

query

not contains

predicate
type

"Dune"

predicate
value

For instance, to test the presence of a h1 node in an HTML response, the following assert can be
used:

GET https://example.org/home
HTTP 200
[Asserts]
xpath "boolean(count(//h1))" == true
xpath "//h1" exists # Equivalent but simpler

As the XPath query boolean(count(//h1)) returns a boolean, the predicate value in the assert
must be either true or false without double quotes. On the other side, say you have an article node
and you want to check the value of some data attributes:

<article
 id="electric-cars"
 data-visible="true"
...
</article>

The following assert will check the value of the data-visible attribute:

GET https://example.org/home
HTTP 200
[Asserts]
xpath "string(//article/@data-visible)" == "true"

In this case, the XPath query string(//article/@data-visible) returns a string, so the predicate
value must be a string.

The predicate function == can be used with string, numbers or booleans; startWith and contains
can only be used with strings and bytes, while matches only works on string. If a query returns a
number, using a matches predicate will cause a runner error.

A really well tested web page...
GET https://example.org/home
HTTP 200
[Asserts]
header "Content-Type" contains "text/html"
header "Last-Modified" == "Wed, 21 Oct 2015 07:28:00 GMT"
xpath "//h1" exists # Check we've at least one h1
xpath "normalize-space(//h1)" contains "Welcome"
xpath "//h2" count == 13
xpath "string(//article/@data-id)" startsWith "electric"

Status assert

Check the received HTTP response status code. Status assert consists of the keyword status
followed by a predicate function and value.

GET https://example.org
HTTP *
[Asserts]
status < 300

Header assert

Check the value of a received HTTP response header. Header assert consists of the keyword

https://developer.mozilla.org/en-US/docs/Learn/HTML/Howto/Use_data_attributes

header followed by the value of the header, a predicate function and a predicate value. Like headers
implicit asserts, the check is case-insensitive for the name: comparing a Content-Type header is
equivalent to a content-type one.

GET https://example.org
HTTP 302
[Asserts]
header "Location" contains "www.example.net"
header "Last-Modified" matches /\d{2} [a-z-A-Z]{3} \d{4}/

If there are multiple headers with the same name, the header assert returns a collection, so count,
includes can be used in this case to test the header list.

Let’s say we have this request and response:

> GET /hello HTTP/1.1
> Host: example.org
> Accept: */*
> User-Agent: hurl/2.0.0-SNAPSHOT
>
* Response: (received 12 bytes in 11 ms)
*
< HTTP/1.0 200 OK
< Vary: Content-Type
< Vary: User-Agent
< Content-Type: text/html; charset=utf-8
< Content-Length: 12
< Server: Flask Server
< Date: Fri, 07 Oct 2022 20:53:35 GMT

One can use explicit header asserts:

GET https://example.org/hello
HTTP 200
[Asserts]
header "Vary" count == 2
header "Vary" includes "User-Agent"
header "Vary" includes "Content-Type"

Or implicit header asserts:

GET https://example.org/hello
HTTP 200
Vary: User-Agent
Vary: Content-Type

URL assert

Check the last fetched URL. This is most meaningful if you have told Hurl to follow redirection (see
[[Options]section]options or --location option). URL assert consists of the keyword url followed
by a predicate function and value.

GET https://example.org/redirecting
[Options]
location: true
HTTP 200
[Asserts]
url == "https://example.org/redirected"

Cookie assert

Check value or attributes of a Set-Cookie response header. Cookie assert consists of the keyword
cookie, followed by the cookie name (and optionally a cookie attribute), a predicate function and
value.

Cookie attributes value can be checked by using the following format: <cookie-name>[cookie-
attribute]. The following attributes are supported: Value, Expires, Max-Age, Domain, Path,
Secure, HttpOnly and SameSite.

Secure and HttpOnly attributes can only be tested with exists or not exists predicates to
reflect the Set-Cookie header semantics (in other words, queries <cookie-name>[HttpOnly]
and <cookie-name>[Secure] don’t return boolean).

Body assert

Check the value of the received HTTP response body when decoded as a string. Body assert
consists of the keyword body followed by a predicate function and value. The encoding used to
decode the body is based on the charset value in the Content-Type header response.

GET https://example.org
HTTP 200
[Asserts]
body contains "<h1>Welcome!</h1>"

If the Content-Type doesn’t include any encoding hint, a decode filter can be used to explicitly
decode the body response bytes.

GET http://localhost:8000/cookies/set
HTTP 200

Explicit check of Set-Cookie header value. If the attributes are
not in this exact order, this assert will fail.
Set-Cookie: LSID=DQAAAKEaem_vYg; Expires=Wed, 13 Jan 2021 22:23:01 GMT; Secure; HttpOnly; Path=/accounts; SameSite=Lax;
Set-Cookie: HSID=AYQEVnDKrdst; Domain=localhost; Expires=Wed, 13 Jan 2021 22:23:01 GMT; HttpOnly; Path=/
Set-Cookie: SSID=Ap4PGTEq; Domain=localhost; Expires=Wed, 13 Jan 2021 22:23:01 GMT; Secure; HttpOnly; Path=/

Using cookie assert, one can check cookie value and various attributes.
[Asserts]
cookie "LSID" == "DQAAAKEaem_vYg"
cookie "LSID[Value]" == "DQAAAKEaem_vYg"
cookie "LSID[Expires]" exists
cookie "LSID[Expires]" contains "Wed, 13 Jan 2021"
cookie "LSID[Max-Age]" not exists
cookie "LSID[Domain]" not exists
cookie "LSID[Path]" == "/accounts"
cookie "LSID[Secure]" exists
cookie "LSID[HttpOnly]" exists
cookie "LSID[SameSite]" == "Lax"

Our HTML response is encoded with GB 2312 (see https://en.wikipedia.org/wiki/GB_2312)
GET https://example.org/cn
HTTP 200
[Asserts]
header "Content-Type" == "text/html; charset=gb2312"
bytes contains hex,c4e3bac3cac0bde7; # 你好世界 encoded in GB 2312
body contains "你好世界"

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie

Our HTML response is encoded using GB 2312.
But, the 'Content-Type' HTTP response header doesn't precise any charset,
so we decode explicitly the bytes.
GET https://example.org/cn
HTTP 200
[Asserts]
header "Content-Type" == "text/html"
bytes contains hex,c4e3bac3cac0bde7; # 你好世界 encoded in GB2312
bytes decode "gb2312" contains "你好世界"

Bytes assert

Check the value of the received HTTP response body as a bytestream. Body assert consists of the
keyword bytes followed by a predicate function and value.

GET https://example.org/data.bin
HTTP 200
[Asserts]
bytes startsWith hex,efbbbf;
bytes count == 12424
header "Content-Length" == "12424"

XPath assert

Check the value of a XPath query on the received HTTP body decoded as a string (using the
charset value in the Content-Type header response). Currently, only XPath 1.0 expression can be
used. Body assert consists of the keyword xpath followed by a predicate function and value. Values
can be string, boolean or number depending on the XPath query.

Let’s say we want to check this HTML response:

With Hurl, we can write multiple XPath asserts describing the DOM content:

$ curl -v https://example.org

< HTTP/1.1 200 OK
< Content-Type: text/html; charset=UTF-8
...
<!doctype html>
<html>
 <head>
 <title>Example Domain</title>
 ...
 </head>

 <body>
 <div>
 <h1>Example</h1>
 <p>This domain is for use in illustrative examples in documents. You may use this domain in literature without prior coordination or asking for permission.</p>
 <p>More information...</p>
 </div>
 </body>
</html>

GET https://example.org
HTTP 200
Content-Type: text/html; charset=UTF-8
[Asserts]
xpath "string(/html/head/title)" contains "Example" # Check title
xpath "count(//p)" == 2 # Check the number of <p>
xpath "//p" count == 2 # Similar assert for <p>
xpath "boolean(count(//h2))" == false # Check there is no <h2>

https://en.wikipedia.org/wiki/XPath

XML Namespaces are also supported. Let’s say you want to check this XML response:

<?xml version="1.0"?>
<!-- both namespace prefixes are available throughout -->
<bk:book xmlns:bk='urn:loc.gov:books'
 xmlns:isbn='urn:ISBN:0-395-36341-6'>
 <bk:title>Cheaper by the Dozen</bk:title>
 <isbn:number>1568491379</isbn:number>
</bk:book>

This XML response can be tested with the following Hurl file:

The XPath expressions string(//bk:book/bk:title) and string(//bk:book/isbn:number) are
written with bk and isbn namespaces.

For convenience, the first default namespace can be used with _

JSONPath assert

Check the value of a JSONPath query on the received HTTP body decoded as a JSON document.
JSONPath assert consists of the keyword jsonpath followed by a predicate function and value.

Let’s say we want to check this JSON response:

curl -v http://httpbin.org/json

< HTTP/1.1 200 OK
< Content-Type: application/json
...

{
 "slideshow": {
 "author": "Yours Truly",
 "date": "date of publication",
 "slides": [
 {
 "title": "Wake up to WonderWidgets!",
 "type": "all"
 },
 ...
],
 "title": "Sample Slide Show"
 }
}

xpath "//h2" not exists # Similar assert for <h2>

GET http://localhost:8000/assert-xpath
HTTP 200
[Asserts]

xpath "string(//bk:book/bk:title)" == "Cheaper by the Dozen"
xpath "string(//*[name()='bk:book']/*[name()='bk:title'])" == "Cheaper by the Dozen"
xpath "string(//*[local-name()='book']/*[local-name()='title'])" == "Cheaper by the Dozen"

xpath "string(//bk:book/isbn:number)" == "1568491379"
xpath "string(//*[name()='bk:book']/*[name()='isbn:number'])" == "1568491379"
xpath "string(//*[local-name()='book']/*[local-name()='number'])" == "1568491379"

https://goessner.net/articles/JsonPath/

With Hurl, we can write multiple JSONPath asserts describing the DOM content:

GET http://httpbin.org/json
HTTP 200
[Asserts]
jsonpath "$.slideshow.author" == "Yours Truly"
jsonpath "$.slideshow.slides[0].title" contains "Wonder"
jsonpath "$.slideshow.slides" count == 2
jsonpath "$.slideshow.date" != null
jsonpath "$.slideshow.slides[*].title" includes "Mind Blowing!"

Explain that the value selected by the JSONPath is coerced to a string when only one node is
selected.

In matches predicates, metacharacters beginning with a backslash (like \d, \s) must be escaped.
Alternatively, matches predicate support JavaScript-like Regular expression syntax to enhance the
readability:

GET https://sample.org/hello
HTTP 200
[Asserts]

Predicate value with matches predicate:
jsonpath "$.date" matches "^\\d{4}-\\d{2}-\\d{2}$"
jsonpath "$.name" matches "Hello [a-zA-Z]+!"

Equivalent syntax:
jsonpath "$.date" matches /^\d{4}-\d{2}-\d{2}$/
jsonpath "$.name" matches /Hello [a-zA-Z]+!/

Regex assert

Check that the HTTP received body, decoded as text, matches a regex pattern.

GET https://sample.org/hello
HTTP 200
[Asserts]
regex "^(\\d{4}-\\d{2}-\\d{2})$" == "2018-12-31"
Same assert as previous using regex literals
regex /^(\d{4}-\d{2}-\d{2})$/ == "2018-12-31"

The regex pattern must have at least one capture group, otherwise the assert will fail. The assertion
is done on the captured group value. When the regex pattern is a double-quoted string,
metacharacters beginning with a backslash in the pattern (like \d, \s) must be escaped; literal
pattern enclosed by / can also be used to avoid metacharacters escaping.

SHA-256 assert

Check response body SHA-256 hash.

MD5 assert

Check response body MD5 hash.

GET https://example.org/data.tar.gz
HTTP 200
[Asserts]
sha256 == hex,039058c6f2c0cb492c533b0a4d14ef77cc0f78abccced5287d84a1a2011cfb81;

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/MD5

GET https://example.org/data.tar.gz
HTTP 200
[Asserts]
md5 == hex,ed076287532e86365e841e92bfc50d8c;

Variable assert

Test that the XML endpoint return 200 pets
GET https://example.org/api/pets
HTTP 200
[Captures]
pets: xpath "//pets"
[Asserts]
variable "pets" count == 200

Duration assert

Check the total duration (sending plus receiving time) of the HTTP transaction.

GET https://sample.org/helloworld
HTTP 200
[Asserts]
duration < 1000 # Check that response time is less than one second

SSL certificate assert

Check the SSL certificate properties. Certificate assert consists of the keyword certificate,
followed by the certificate attribute value.

The following attributes are supported: Subject, Issuer, Start-Date, Expire-Date and Serial-
Number.

GET https://example.org
HTTP 200
[Asserts]
certificate "Subject" == "CN=example.org"
certificate "Issuer" == "C=US, O=Let's Encrypt, CN=R3"
certificate "Expire-Date" daysAfterNow > 15
certificate "Serial-Number" matches "[0-9af]+"

Body

Optional assertion on the received HTTP response body. Body section can be seen as syntactic
sugar over body asserts (with == predicate). If the body of the response is a JSON string or a XML
string, the body assertion can be directly inserted without any modification. For a text based body
that is neither JSON nor XML, one can use multiline string that starts with ``` and ends with ```.
For a precise byte control of the response body, a Base64 encoded string or an input file can be
used to describe exactly the body byte content to check.

JSON body

Get a doggy thing:
GET https://example.org/api/dogs/{{dog-id}}
HTTP 200
{
 "id": 0,
 "name": "Frieda",

https://www.json.org/
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/Base64

 "picture": "images/scottish-terrier.jpeg",
 "age": 3,
 "breed": "Scottish Terrier",
 "location": "Lisco, Alabama"
}

JSON response body can be seen as syntactic sugar of multiline string body with json identifier:

Get a doggy thing:
GET https://example.org/api/dogs/{{dog-id}}
HTTP 200
```json
{
    "id": 0,
    "name": "Frieda",
    "picture": "images/scottish-terrier.jpeg",
    "age": 3,
    "breed": "Scottish Terrier",
    "location": "Lisco, Alabama"
}
```

XML body

XML response body can be seen as syntactic sugar of multiline string body with xml identifier:

Multiline string body

GET https://example.org/models
HTTP 200

GET https://example.org/api/catalog
HTTP 200
<?xml version="1.0" encoding="UTF-8"?>
<catalog>
 <book id="bk101">
 <author>Gambardella, Matthew</author>
 <title>XML Developer's Guide</title>
 <genre>Computer</genre>
 <price>44.95</price>
 <publish_date>2000-10-01</publish_date>
 <description>An in-depth look at creating applications with XML.</description>
 </book>
</catalog>

GET https://example.org/api/catalog
HTTP 200
```xml
<?xml version="1.0" encoding="UTF-8"?>
<catalog>
   <book id="bk101">
      <author>Gambardella, Matthew</author>
      <title>XML Developer's Guide</title>
      <genre>Computer</genre>
      <price>44.95</price>
      <publish_date>2000-10-01</publish_date>
      <description>An in-depth look at creating applications with XML.</description>
   </book>
</catalog>
```



```
Year,Make,Model,Description,Price
1997,Ford,E350,"ac, abs, moon",3000.00
1999,Chevy,"Venture ""Extended Edition""","",4900.00
1999,Chevy,"Venture ""Extended Edition, Very Large""",,5000.00
1996,Jeep,Grand Cherokee,"MUST SELL! air, moon roof, loaded",4799.00
```

The standard usage of a multiline string is :

```
line1
line2
line3
```

Oneline string body

For text based response body that do not contain newlines, one can use oneline string, started and
ending with `.

POST https://example.org/helloworld
HTTP 200
`Hello world!`

Base64 body

Base64 response body assert starts with base64, and end with ;. MIME’s Base64 encoding is
supported (newlines and white spaces may be present anywhere but are to be ignored on
decoding), and = padding characters might be added.

GET https://example.org
HTTP 200
base64,TG9yZW0gaXBzdW0gZG9sb3Igc2l0IGFtZXQsIGNvbnNlY3RldHVyIG
FkaXBpc2NpbmcgZWxpdC4gSW4gbWFsZXN1YWRhLCBuaXNsIHZlbCBkaWN0dW0g
aGVuZHJlcml0LCBlc3QganVzdG8gYmliZW5kdW0gbWV0dXMsIG5lYyBydXRydW
0gdG9ydG9yIG1hc3NhIGlkIG1ldHVzLiA=;

File body

To use the binary content of a local file as the body response assert, file body can be used. File
body starts with file, and ends with ;`

GET https://example.org
HTTP 200
file,data.bin;

File are relative to the input Hurl file, and cannot contain implicit parent directory (..). You can use -
-file-root option to specify the root directory of all file nodes.

Filters

Definition

Captures and asserts share a common structure: query. A query is used to extract data from an
HTTP response; this data can come from the HTTP response body, the HTTP response headers or
from the HTTP meta-information (like duration for instance)...

In this example, the query jsonpath "$.books[0].name" is used in a capture to save data and in
an assert to test the HTTP response body.

Capture:

 :

Assert:

In both case, the query is exactly the same: queries are the core structure of asserts and captures.
Sometimes, you want to process data extracted by queries: that’s the purpose of filters.

Filters are used to transform value extracted by a query and can be used in asserts and captures to
refine data. Filters can be chained, allowing for fine-grained data extraction.

Example

GET https://example.org/api
HTTP 200
[Captures]
name: jsonpath "$user.id" replace /\d/ "x"
[Asserts]
header "x-servers" split "," count == 2
header "x-servers" split "," nth 0 == "rec1"
header "x-servers" split "," nth 1 == "rec3"
jsonpath "$.books" count == 12

Description

count

Counts the number of items in a collection.

GET https://example.org/api
HTTP 200
[Asserts]
jsonpath "$.books" count == 12

name

variable

jsonpath "$.books[0].name"

query

jsonpath "$.books[0].name"

query

== "Dune"

predicate

jsonpath "$.name"

query

split "," nth 0

2 filters

== "Herbert"

predicate

http://localhost:4000/docs/standalone/hurl-5.0.1.html#file-format-capturing-response
http://localhost:4000/docs/standalone/hurl-5.0.1.html#file-format-asserting-response

daysAfterNow

Returns the number of days between now and a date in the future.

GET https://example.org
HTTP 200
[Asserts]
certificate "Expire-Date" daysAfterNow > 15

daysBeforeNow

Returns the number of days between now and a date in the past.

GET https://example.org
HTTP 200
[Asserts]
certificate "Start-Date" daysBeforeNow < 100

decode

Decode bytes to string using encoding.

format

Formats a date to a string given a specification format.

htmlEscape

Converts the characters &, < and > to HTML-safe sequence.

GET https://example.org/api
HTTP 200
[Asserts]
jsonpath "$.text" htmlEscape == "a > b"

htmlUnescape

Converts all named and numeric character references (e.g. >, >, >) to the
corresponding Unicode characters.

The 'Content-Type' HTTP response header does not precise the charset 'gb2312'
so body must be decoded explicitly by Hurl before processing any text based assert
GET https://exapple.org/hello_china
HTTP 200
[Asserts]
header "Content-Type" == "text/html"
Content-Type has no encoding clue, we must decode ourselves the body response.
bytes decode "gb2312" xpath "string(//body)" == "你好世界"

GET https://example.org
HTTP 200
[Asserts]
cookie "LSID[Expires]" format "%a, %d %b %Y %H:%M:%S" == "Wed, 13 Jan 2021 22:23:01"

https://docs.rs/chrono/latest/chrono/format/strftime/index.html

GET https://example.org/api
HTTP 200
[Asserts]
jsonpath "$.escaped_html[1]" htmlUnescape == "Foo © bar !"

jsonpath

Evaluates a JSONPath expression.

GET https://example.org/api
HTTP 200
[Captures]
books: xpath "string(//body/@data-books)"
[Asserts]
variable "books" jsonpath "$[0].name" == "Dune"
variable "books" jsonpath "$[0].author" == "Franck Herbert"

nth

Returns the element from a collection at a zero-based index.

GET https://example.org/api
HTTP 200
[Asserts]
jsonpath "$.books" nth 2 == "Children of Dune"

regex

Extracts regex capture group. Pattern must have at least one capture group.

GET https://example.org/foo
HTTP 200
[Captures]
param1: header "header1"
param2: header "header2" regex "Hello (.*)!"
param3: header "header2" regex /Hello (.*)!/

replace

Replaces all occurrences of old string with new string.

GET https://example.org/foo
HTTP 200
[Captures]
url: jsonpath "$.url" replace "http://" "https://"
[Asserts]
jsonpath "$.ips" replace ", " "|" == "192.168.2.1|10.0.0.20|10.0.0.10"

split

Splits to a list of strings around occurrences of the specified delimiter.

GET https://example.org/foo
HTTP 200
[Asserts]
jsonpath "$.ips" split ", " count == 3

https://goessner.net/articles/JsonPath/

toDate

Converts a string to a date given a specification format.

GET https:///example.org
HTTP 200
[Asserts]
header "Expires" toDate "%a, %d %b %Y %H:%M:%S GMT" daysBeforeNow > 1000

ISO 8601 / RFC 3339 date and time format have shorthand format %+:

toFloat

Converts to float number.

GET https://example.org/foo
HTTP 200
[Asserts]
jsonpath "$.pi" toFloat == 3.14

toInt

Converts to integer number.

GET https://example.org/foo
HTTP 200
[Asserts]
jsonpath "$.id" toInt == 123

urlDecode

Replaces %xx escapes with their single-character equivalent.

GET https://example.org/foo
HTTP 200
[Asserts]
jsonpath "$.encoded_url" urlDecode == "https://mozilla.org/?x=шеллы"

urlEncode

Percent-encodes all the characters which are not included in unreserved chars (see RFC3986) with
the exception of forward slash (/).

GET https://example.org/api/books
HTTP 200
[Asserts]
jsonpath "$.published" == "2023-01-23T18:25:43.511Z"
jsonpath "$.published" toDate "%Y-%m-%dT%H:%M:%S%.fZ" format "%A" == "Monday"
jsonpath "$.published" toDate "%+" format "%A" == "Monday" # %+ can be used to parse ISO 8601 / RFC 3339

GET https://example.org/foo
HTTP 200
[Asserts]
jsonpath "$.url" urlEncode == "https%3A//mozilla.org/%3Fx%3D%D1%88%D0%B5%D0%BB%D0%BB%D1%8B"

https://docs.rs/chrono/latest/chrono/format/strftime/index.html
https://www.rfc-editor.org/rfc/rfc3986

xpath

Evaluates a XPath expression.

GET https://example.org/hello_gb2312
HTTP 200
[Asserts]
bytes decode "gb2312" xpath "string(//body)" == "你好世界"

Templates

Variables

In Hurl file, you can generate value using two curly braces, i.e {{my_variable}}. For instance, if
you want to reuse a value from an HTTP response in the next entries, you can capture this value in
a variable and reuse it in a template.

GET https://example.org

HTTP 200
[Captures]
csrf_token: xpath "string(//meta[@name='_csrf_token']/@content)"

Do the login !
POST https://acmecorp.net/login?user=toto&password=1234
X-CSRF-TOKEN: {{csrf_token}}
HTTP 302

In this example, we capture the value of the CSRF token from the body of the first response, and
inject it as a header in the next POST request.

GET https://example.org/api/index

HTTP 200
[Captures]
index: body

GET https://example.org/api/status

HTTP 200
[Asserts]
jsonpath "$.errors[{{index}}].id" == "error"

In this second example, we capture the body in a variable index, and reuse this value in the query
jsonpath "$.errors[{{index}}].id".

Types

Variables are typed, and can be either string, bool, number, null or collections. Depending on the
variable type, templates can be rendered differently. Let’s say we have captured an integer value
into a variable named count:

https://en.wikipedia.org/wiki/XPath
https://en.wikipedia.org/wiki/Cross-site_request_forgery

GET https://sample/counter

HTTP 200
[Captures]
count: jsonpath "$.results[0]"

The following entry:

GET https://sample/counter/{{count}}

HTTP 200
[Asserts]
jsonpath "$.id" == "{{count}}"

will be rendered at runtime to:

GET https://sample/counter/458

HTTP 200
[Asserts]
jsonpath "$.id" == "458"

resulting in a comparison between the JSONPath expression and a string value.

On the other hand, the following assert:

GET https://sample/counter/{{count}}

HTTP 200
[Asserts]
jsonpath "$.index" == {{count}}

will be rendered at runtime to:

GET https://sample/counter/458

HTTP 200
[Asserts]
jsonpath "$.index" == 458

resulting in a comparison between the JSONPath expression and an integer value.

So if you want to use typed values (in asserts for instances), you can use {{my_var}}. If you’re
interested in the string representation of a variable, you can surround the variable with double
quotes , as in "{{my_var}}".

When there is no possible ambiguities, like using a variable in an URL, or in a header, you can
omit the double quotes. The value will always be rendered as a string.

Injecting Variables

Variables can also be injected in a Hurl file:

by using --variable option
by using --variables-file option

by defining environment variables, for instance HURL_foo=bar
by defining variables in an [[Options] section]options

Lets’ see how to inject variables, given this test.hurl:

GET https://{{host}}/{{id}}/status
HTTP 304

GET https://{{host}}/health
HTTP 200

variable option

Variable can be defined with command line option:

$ hurl --variable host=example.net --variable id=1234 test.hurl

variables-file option

We can also define all injected variables in a file:

$ hurl --variables-file vars.env test.hurl

where vars.env is

host=example.net
id=1234

Environment variable

We can use environment variables in the form of HURL_name=value:

$ export HURL_host=example.net
$ export HURL_id=1234
$ hurl test.hurl

Options sections

We can define variables in [Options] section. Variables defined in a section are available for the
next requests.

GET https://{{host}}/{{id}}/status
[Options]
variable: host=example.net
variable: id=1234
HTTP 304

GET https://{{host}}/health
HTTP 200

Templating Body

Variables can be used in JSON body:

PUT https://example.org/api/hits
{
 "key0": "{{a_string}}",
 "key1": {{a_bool}},
 "key2": {{a_null}},
 "key3": {{a_number}}
}

Note that XML body can’t use variables directly, for the moment. In order to templatize a XML body,
you can use multiline string body with variables. The multiline string body allows to templatize any
text based body (JSON, XML, CSV etc...):

PUT https://example.org/api/hits
Content-Type: application/json
```
{
    "key0": "{{a_string}}",
    "key1": {{a_bool}},
    "key2": {{a_null}},
    "key3": {{a_number}}
}
```

Variables can be initialized via command line:

Resulting in a PUT request with the following JSON body:

{
 "key0": "apple",
 "key1": true,
 "key2": null,
 "key3": 42
}

Grammar

Definitions

Short description:

operator | denotes alternative,
operator * denotes iteration (zero or more),
operator + denotes iteration (one or more),

Syntax Grammar

General

$ hurl --variable a_string=apple --variable a_bool=true --variable a_null=null --variable a_number=42 test.hurl

hurl-file
entry*
lt*

entry(used by hurl-file)
request
response?

request(used by entry)
lt*
method sp value-string lt
header*
request-section*
body?

response(used by entry)
lt*
version sp status lt
header*
response-section*
body?

method(used by request)
[A-Z]+

version(used by response)
 HTTP/1.0
|HTTP/1.1
|HTTP/2
|HTTP

status(used by response)
[0-9]+

header(used by request, response)
lt*
key-value lt

body(used by request, response)
lt*
bytes lt

Sections

request-section(used by request)
 basic-auth-section
|query-string-params-section
|form-params-section
|multipart-form-data-section
|cookies-section
|options-section

response-section(used by response)
 captures-section
|asserts-section

query-string-params-section(used by request-section)
lt*
[QueryStringParams] lt
key-value*

form-params-section(used by request-section)
lt*
[FormParams] lt
key-value*

multipart-form-data-section(used by request-section)
lt*
[MultipartFormData] lt
multipart-form-data-param*

cookies-section(used by request-section)
lt*
[Cookies] lt
key-value*

captures-section(used by response-section)
lt*
[Captures] lt
capture*

asserts-section(used by response-section)
lt*
[Asserts] lt
assert*

basic-auth-section(used by request-section)
lt*
[BasicAuth] lt
key-value*

options-section(used by request-section)
lt*
[Options] lt
option*

key-value(used by header, query-string-params-section, form-params-
section, cookies-section, basic-auth-section, multipart-form-data-param)
key-string : value-string

multipart-form-data-param(used by multipart-form-data-section)
file-param|key-value

file-param(used by multipart-form-data-param)
lt*
key-string : file-value lt

file-value(used by file-param)
file, filename ; (file-contenttype)?

file-contenttype(used by file-value)
[a-zA-Z0-9/+-]+

capture(used by captures-section)
lt*
key-string : query (sp filter)* lt

assert(used by asserts-section)
lt*
query (sp filter)* sp predicate lt

option(used by options-section)
lt*
(aws-sigv4-option|ca-certificate-option|client-certificate-
option|client-key-option|compressed-option|connect-to-option|delay-
option|follow-redirect-option|follow-redirect-trusted-option|http10-
option|http11-option|http2-option|http3-option|insecure-option|ipv4-
option|ipv6-option|max-redirs-option|netrc-option|netrc-file-
option|netrc-optional-option|output-option|path-as-is-option|proxy-
option|repeat-option|resolve-option|retry-option|retry-interval-
option|skip-option|unix-socket-option|user-option|variable-
option|verbose-option|very-verbose-option)

aws-sigv4-option(used by option)
aws-sigv4 : value-string lt

ca-certificate-option(used by option)
cacert : filename lt

client-certificate-option(used by option)
cert : filename-password lt

client-key-option(used by option)
key : value-string lt

compressed-option(used by option)
compressed : boolean-option lt

connect-to-option(used by option)
connect-to : value-string lt

delay-option(used by option)
delay : duration-option lt

follow-redirect-option(used by option)
location : boolean-option lt

follow-redirect-trusted-option(used by option)
location-trusted : boolean-option lt

http10-option(used by option)
http1.0 : boolean-option lt

http11-option(used by option)
http1.1 : boolean-option lt

http2-option(used by option)
http2 : boolean-option lt

http3-option(used by option)
http3 : boolean-option lt

insecure-option(used by option)
insecure : boolean-option lt

ipv4-option(used by option)
ipv4 : boolean-option lt

ipv6-option(used by option)
ipv6 : boolean-option lt

max-redirs-option(used by option)
max-redirs : integer-option lt

netrc-option(used by option)
netrc : boolean-option lt

netrc-file-option(used by option)
netrc-file : value-string lt

netrc-optional-option(used by option)
netrc-optional : boolean-option lt

output-option(used by option)
output : value-string lt

path-as-is-option(used by option)
path-as-is : boolean-option lt

proxy-option(used by option)
proxy : value-string lt

resolve-option(used by option)
resolve : value-string lt

repeat-option(used by option)
repeat : integer-option lt

retry-option(used by option)
retry : integer-option lt

retry-interval-option(used by option)
retry-interval : duration-option lt

skip-option(used by option)
skip : boolean-option lt

unix-socket-option(used by option)
unix-socket : value-string lt

user-option(used by option)
user : value-string lt

variable-option(used by option)
variable : variable-definition lt

verbose-option(used by option)
verbose : boolean-option lt

very-verbose-option(used by option)
very-verbose : boolean-option lt

variable-definition(used by variable-option)
variable-name = variable-value

boolean-option(used by compressed-option, follow-redirect-option, follow-
redirect-trusted-option, http10-option, http11-option, http2-option, http3-
option, insecure-option, ipv4-option, ipv6-option, netrc-option, netrc-optional-
option, path-as-is-option, skip-option, verbose-option, very-verbose-option)
boolean|template

integer-option(used by max-redirs-option, repeat-option, retry-option)
integer|template

duration-option(used by delay-option, retry-interval-option)
(integer duration-unit?)|template

duration-unit(used by duration-option)
ms|s|m

variable-value(used by variable-definition)
 null
|boolean
|integer
|float
|key-string
|quoted-string

Query

query(used by capture, assert)
 status-query
|url-query
|header-query
|certificate-query
|cookie-query
|body-query
|xpath-query

|jsonpath-query
|regex-query
|variable-query
|duration-query
|bytes-query
|sha256-query
|md5-query

status-query(used by query)
status

url-query(used by query)
url

header-query(used by query)
header sp quoted-string

certificate-query(used by query)
certificate sp (Subject|Issuer|Start-Date|Expire-Date|Serial-Number)

cookie-query(used by query)
cookie sp quoted-string

body-query(used by query)
body

xpath-query(used by query)
xpath sp quoted-string

jsonpath-query(used by query)
jsonpath sp quoted-string

regex-query(used by query)
regex sp (quoted-string|regex)

variable-query(used by query)
variable sp quoted-string

duration-query(used by query)
duration

sha256-query(used by query)
sha256

md5-query(used by query)
md5

bytes-query(used by query)
bytes

Predicates

predicate(used by assert)
(not sp)? predicate-func

predicate-func(used by predicate)
 equal-predicate
|not-equal-predicate
|greater-predicate
|greater-or-equal-predicate
|less-predicate
|less-or-equal-predicate
|start-with-predicate
|end-with-predicate
|contain-predicate
|match-predicate

|exist-predicate
|is-empty-predicate
|include-predicate
|integer-predicate
|float-predicate
|boolean-predicate
|string-predicate
|collection-predicate
|date-predicate
|iso-date-predicate

equal-predicate(used by predicate-func)
== sp predicate-value

not-equal-predicate(used by predicate-func)
!= sp predicate-value

greater-predicate(used by predicate-func)
> sp (number|quoted-string)

greater-or-equal-predicate(used by predicate-func)
>= sp sp* (number|quoted-string)

less-predicate(used by predicate-func)
< sp (number|quoted-string)

less-or-equal-predicate(used by predicate-func)
<= sp (number|quoted-string)

start-with-predicate(used by predicate-func)
startsWith sp (quoted-string|oneline-hex|oneline-base64)

end-with-predicate(used by predicate-func)
endsWith sp (quoted-string|oneline-hex|oneline-base64)

contain-predicate(used by predicate-func)
contains sp quoted-string

match-predicate(used by predicate-func)
matches sp (quoted-string|regex)

exist-predicate(used by predicate-func)
exists

is-empty-predicate(used by predicate-func)
isEmpty

include-predicate(used by predicate-func)
includes sp predicate-value

integer-predicate(used by predicate-func)
isInteger

float-predicate(used by predicate-func)
isFloat

boolean-predicate(used by predicate-func)
isBoolean

string-predicate(used by predicate-func)
isString

collection-predicate(used by predicate-func)
isCollection

date-predicate(used by predicate-func)
isDate

iso-date-predicate(used by predicate-func)

isIsoDate

predicate-value(used by equal-predicate, not-equal-predicate, include-predicate)
 boolean
|multiline-string
|null
|number
|oneline-base64
|oneline-file
|oneline-hex
|quoted-string
|template

Bytes

bytes(used by body)
 json-value
|xml
|multiline-string
|oneline-string
|oneline-base64
|oneline-file
|oneline-hex

xml(used by bytes)
< To Be Defined >

oneline-base64(used by start-with-predicate, end-with-predicate, predicate-
value, bytes)
base64, [A-Z0-9+-= \n]+ ;

oneline-file(used by predicate-value, bytes)
file, filename ;

oneline-hex(used by start-with-predicate, end-with-predicate, predicate-
value, bytes)
hex, hexdigit* ;

Strings

quoted-string(used by variable-value, header-query, cookie-query, xpath-
query, jsonpath-query, regex-query, variable-query, greater-predicate, greater-or-
equal-predicate, less-predicate, less-or-equal-predicate, start-with-
predicate, end-with-predicate, contain-predicate, match-predicate, predicate-
value, jsonpath-filter, regex-filter, replace-filter, split-filter, xpath-filter)
" (quoted-string-content|template)* "

quoted-string-content(used by quoted-string)
(quoted-string-text|quoted-string-escaped-char)*

quoted-string-text(used by quoted-string-content)
~["\\]+

quoted-string-escaped-char(used by quoted-string-content)
\ ("|\|\b|\f|\n|\r|\t|\u unicode-char)

key-string(used by key-value, file-param, capture, variable-value)
(key-string-content|template)+

key-string-content(used by key-string)
(key-string-text|key-string-escaped-char)*

key-string-text(used by key-string-content)

(alphanum|_|-|.|[|]|@|$)+

key-string-escaped-char(used by key-string-content)
\ (#|:|\|\b|\f|\n|\r|\t|\u unicode-char)

value-string(used by request, key-value, aws-sigv4-option, client-key-
option, connect-to-option, netrc-file-option, output-option, proxy-option, resolve-
option, unix-socket-option, user-option)
(value-string-content|template)*

value-string-content(used by value-string)
(value-string-text|value-string-escaped-char)*

value-string-text(used by value-string-content)
~[#\n\\]+

value-string-escaped-char(used by value-string-content)
\ (#|\|\b|\f|\n|\r|\t|\u unicode-char)

oneline-string(used by bytes)
` (oneline-string-content|template)* `

oneline-string-content(used by oneline-string)
(oneline-string-text|oneline-string-escaped-char)*

oneline-string-text(used by oneline-string-content)
~[#\n\\] ~`

oneline-string-escaped-char(used by oneline-string-content)
\ (`|#|\|b|f|u unicode-char)

multiline-string(used by predicate-value, bytes)
``` multiline-string-type? (, multiline-string-attribute)* lt
(multiline-string-content|template)* lt
```

multiline-string-type(used by multiline-string)
 base64
|hex
|json
|xml
|graphql

multiline-string-attribute(used by multiline-string)
 escape
|novariable

multiline-string-content(used by multiline-string)
(multiline-string-text|multiline-string-escaped-char)*

multiline-string-text(used by multiline-string-content)
~[\\]+ ~```

multiline-string-escaped-char(used by multiline-string-content)
\ (\|b|f|n|r|t|`|u unicode-char)

filename(used by file-value, ca-certificate-option, oneline-file)
(filename-content|template)*

filename-content(used by filename)
(filename-text|filename-escaped-char)*

filename-text(used by filename-content)
~[#;{} \n\\]+

filename-escaped-char(used by filename-content)
\ (\|b|f|n|r|t|#|;| |{|}|u unicode-char)

filename-password(used by client-certificate-option)

(filename-password-content|template)*

filename-password-content(used by filename-password)
(filename-password-text|filename-password-escaped-char)*

filename-password-text(used by filename-password-content)
~[#;{} \n\\]+

filename-password-escaped-char(used by filename-password-content)
\ (\|b|f|n|r|t|#|;| |{|}|:|u unicode-char)

unicode-char(used by quoted-string-escaped-char, key-string-escaped-char, value-
string-escaped-char, oneline-string-escaped-char, multiline-string-escaped-
char, filename-escaped-char, filename-password-escaped-char)
{ hexdigit+ }

JSON

json-value(used by bytes, json-key-value, json-array)
 template
|json-object
|json-array
|json-string
|json-number
|boolean
|null

json-object(used by json-value)
{ json-key-value (, json-key-value)* }

json-key-value(used by json-object)
json-string : json-value

json-array(used by json-value)
[json-value (, json-value)*]

json-string(used by json-value, json-key-value)
" (json-string-content|template)* "

json-string-content(used by json-string)
json-string-text|json-string-escaped-char

json-string-text(used by json-string-content)
~["\\]

json-string-escaped-char(used by json-string-content)
\ ("|\|b|f|n|r|t|u hexdigit hexdigit hexdigit hexdigit)

json-number(used by json-value)
integer fraction? exponent?

Template / Expression

template(used by boolean-option, integer-option, duration-option, predicate-
value, quoted-string, key-string, value-string, oneline-string, multiline-
string, filename, filename-password, json-value, json-string)
{{ expr }}

expr(used by template)
variable-name (sp filter)*

variable-name(used by variable-definition, expr)
[A-Za-z] [A-Za-z_-0-9]*

Filter

filter(used by capture, assert, expr)
 count-filter
|days-after-now-filter
|days-before-now-filter
|decode-filter
|format-filter
|html-escape-filter
|html-unescape-filter
|jsonpath-filter
|nth-filter
|regex-filter
|replace-filter
|split-filter
|to-date-filter
|to-float-filter
|to-int-filter
|url-decode-filter
|url-encode-filter
|xpath-filter

count-filter(used by filter)
count

days-after-now-filter(used by filter)
daysAfterNow

days-before-now-filter(used by filter)
daysBeforeNow

decode-filter(used by filter)
decode

format-filter(used by filter)
format

html-escape-filter(used by filter)
htmlEscape

html-unescape-filter(used by filter)
htmlUnescape

jsonpath-filter(used by filter)
jsonpath sp quoted-string

nth-filter(used by filter)
nth sp integer

regex-filter(used by filter)
regex sp (quoted-string|regex)

replace-filter(used by filter)
replace sp (quoted-string|regex) sp quoted-string

split-filter(used by filter)
split sp quoted-string

to-date-filter(used by filter)
toDate

to-float-filter(used by filter)
toFloat

to-int-filter(used by filter)
toInt

url-decode-filter(used by filter)

urlDecode

url-encode-filter(used by filter)
urlEncode

xpath-filter(used by filter)
xpath sp quoted-string

Lexical Grammar

boolean(used by boolean-option, variable-value, predicate-value, json-value)
true|false

null(used by variable-value, predicate-value, json-value)
null

alphanum(used by key-string-text)
[A-Za-z0-9]

integer(used by integer-option, duration-option, variable-value, json-number, nth-
filter, float, number)
digit+

float(used by variable-value, number)
integer fraction

number(used by greater-predicate, greater-or-equal-predicate, less-
predicate, less-or-equal-predicate, predicate-value)
integer|float

digit(used by integer, fraction, exponent)
[0-9]

hexdigit(used by oneline-hex, unicode-char, json-string-escaped-char)
[0-9A-Fa-f]

fraction(used by json-number, float)
. digit+

exponent(used by json-number)
(e|E) (+|-)? digit+

sp(used by request, response, capture, assert, header-query, certificate-
query, cookie-query, xpath-query, jsonpath-query, regex-query, variable-
query, predicate, equal-predicate, not-equal-predicate, greater-predicate, greater-
or-equal-predicate, less-predicate, less-or-equal-predicate, start-with-
predicate, end-with-predicate, contain-predicate, match-predicate, include-
predicate, expr, jsonpath-filter, nth-filter, regex-filter, replace-filter, split-
filter, xpath-filter, lt)
[\t]

lt(used by hurl-file, request, response, header, body, query-string-params-
section, form-params-section, multipart-form-data-section, cookies-
section, captures-section, asserts-section, basic-auth-section, options-
section, file-param, capture, assert, option, aws-sigv4-option, ca-certificate-
option, client-certificate-option, client-key-option, compressed-option, connect-
to-option, delay-option, follow-redirect-option, follow-redirect-trusted-
option, http10-option, http11-option, http2-option, http3-option, insecure-
option, ipv4-option, ipv6-option, max-redirs-option, netrc-option, netrc-file-
option, netrc-optional-option, output-option, path-as-is-option, proxy-
option, resolve-option, repeat-option, retry-option, retry-interval-option, skip-
option, unix-socket-option, user-option, variable-option, verbose-option, very-
verbose-option, multiline-string)
sp* comment? [\n]?

comment(used by lt)

~[\n]*

regex(used by regex-query, match-predicate, regex-filter, replace-filter)
/ regex-content /

regex-content(used by regex)
(regex-text|regex-escaped-char)*

regex-text(used by regex-content)
~[\n\/]+

regex-escaped-char(used by regex-content)
\ ~[\n]

Resources

License

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,

 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

Copyright 2021 Hurl

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

