
Hibernate Developer Guide

1

3.6.10.Final

by Gavin King, Christian Bauer, Max Rydahl Andersen,

Emmanuel Bernard, Steve Ebersole, and Hardy Ferentschik

and thanks to James Cobb (Graphic Design), Cheyenne Weaver (Graphic Design),

Bernardo Antonio Buffa Colom&#x00e9, Vincent Ricard, Sebastien Cesbron,

Michael Courcy, Vincent Giguère, Baptiste Mathus, Emmanuel Bernard, Anthony

Patricio, Alvaro Netto, Anderson Braulio, Daniel Vieira Costa, Francisco gamarra,

Gamarra, Luiz Carlos Rodrigues, Marcel Castelo, Paulo César, Pablo L. de Miranda,

Renato Deggau, Rogério Araújo, Wanderson Siqueira, and Cao RedSaga Xiaogang





iii

Preface .............................................................................................................................  v

1. Get Involved ..........................................................................................................  v

2. Getting Started Guide ...........................................................................................  vi

1. Database Access .........................................................................................................  1

1.1. JDBC Connections .............................................................................................. 1

1.1.1. Using connection pooling .......................................................................... 1

1.1.2. Using javax.sql.DataSource ......................................................................  2

1.2. Database Dialects ............................................................................................... 2

1.2.1. Specifying the Dialect to use ....................................................................  2

1.2.2. Dialect resolution .....................................................................................  2

1.2.3. Custom Dialects ....................................................................................... 3

1.3. Database Schema ..............................................................................................  3



iv



v

Preface

Working with both Object-Oriented software and Relational Databases can be cumbersome

and time consuming. Development costs are significantly higher due to a paradigm mismatch

between how data is represented in objects versus relational databases. Hibernate is an Object/

Relational Mapping solution for Java environments. The term Object/Relational Mapping refers

to the technique of mapping data from an object model representation to a relational data model

representation (and visa versa). See http://en.wikipedia.org/wiki/Object-relational_mapping for a

good high-level discussion.

Note

While having a strong background in SQL is not required to use Hibernate, having

a basic understanding of the concepts can greatly help you understand Hibernate

more fully and quickly. Probably the single best background is an understanding of

data modeling principles. You might want to consider these resources as a good

starting point:

• http://www.agiledata.org/essays/dataModeling101.html

• http://en.wikipedia.org/wiki/Data_modeling

Hibernate not only takes care of the mapping from Java classes to database tables (and from

Java data types to SQL data types), but also provides data query and retrieval facilities. It can

significantly reduce development time otherwise spent with manual data handling in SQL and

JDBC. Hibernate’s design goal is to relieve the developer from 95% of common data persistence-

related programming tasks by eliminating the need for manual, hand-crafted data processing

using SQL and JDBC. However, unlike many other persistence solutions, Hibernate does not hide

the power of SQL from you and guarantees that your investment in relational technology and

knowledge is as valid as always.

Hibernate may not be the best solution for data-centric applications that only use stored-

procedures to implement the business logic in the database, it is most useful with object-

oriented domain models and business logic in the Java-based middle-tier. However, Hibernate

can certainly help you to remove or encapsulate vendor-specific SQL code and will help with the

common task of result set translation from a tabular representation to a graph of objects.

1. Get Involved

• Use Hibernate and report any bugs or issues you find. See http://hibernate.org/issuetracker.html

for details.

• Try your hand at fixing some bugs or implementing enhancements. Again, see http://

hibernate.org/issuetracker.html.

http://en.wikipedia.org/wiki/Object-relational_mapping
http://www.agiledata.org/essays/dataModeling101.html
http://en.wikipedia.org/wiki/Data_modeling
http://hibernate.org/issuetracker.html
http://hibernate.org/issuetracker.html
http://hibernate.org/issuetracker.html


Preface

vi

• Engage with the community using mailing lists, forums, IRC, or other ways listed at http://

hibernate.org/community.html.

• Help improve or translate this documentation. Contact us on the developer mailing list if you

have interest.

• Spread the word. Let the rest of your organization know about the benefits of Hibernate.

2. Getting Started Guide

New users may want to first look through the Hibernate Getting Started Guide for basic information

as well as tutorials. Even seasoned veterans may want to considering perusing the sections

pertaining to build artifacts for any changes.

http://hibernate.org/community.html
http://hibernate.org/community.html


Chapter 1.

1

Database Access

1.1. JDBC Connections

Hibernate understands how to connect to a database

through an interface org.hibernate.connection.ConnectionProvider. While

org.hibernate.connection.ConnectionProvider is considered an extension SPI, Hibernate

comes with a number of built-in providers.

1.1.1. Using connection pooling

The built-in connection pooling based providers all require the following settings

hibernate.connection.driver_class

Names the java.sql.Driver implementation class from your JDBC provider.

hibernate.connection.url

The JDBC connection url. See your JDBC provider's documentation for details and examples.

hibernate.connection.username

The name of the user to use when opening a JDBC java.sql.Connection.

hibernate.connection.password

The password associated with the provided username.

1.1.1.1. Using Hibernate's built-in connection pooling

Warning

The built-in Hibernate connection pool is not intended for production use. It lacks

several features found on any decent connection pool. However, it can be quite

useful to get started and in unit testing.

The only additional supported setting for the built-in pooling is the hibernate.connection.pool_size

setting which tells the pool how many connections maximum it can keep in the pool.

1.1.1.2. Using c3p0 for connection pooling

To be continued...

1.1.1.3. Using proxool for connection pooling

To be continued...



Chapter 1. Database Access

2

1.1.2. Using javax.sql.DataSource

Hibernate can also use a javax.sql.DataSource to obtain connections. To do so,

Hibernate expects to be able to locate the javax.sql.DataSource in JNDI. The

hibernate.connection.datasource setting tells Hibernate the JNDI namespace at which it can find

the the javax.sql.DataSource.

Generally speaking a javax.sql.DataSource is configured to connect to the database

using a single set of credentials (username/password). Sometimes, however, the

javax.sql.DataSource is set up so that the credentials have to be used to obtain a

java.sql.Connection from it. In these cases applications would specify the credentials via the

hibernate.connection.username and hibernate.connection.password settings, which Hibernate

would pass along to the javax.sql.DataSource when obtaining a java.sql.Connection from it.

1.2. Database Dialects

A Dialect informs Hibernate of the capabilities of the underlying database. This role is fulfilled

by an instance of a org.hibernate.dialect.Dialect subclass. The Dialect is one of the most

important pieces of information given to the Hibernate org.hibernate.Sessionfactory during

startup as it allows Hibernate to properly plan how it needs to communicate with the database.

1.2.1. Specifying the Dialect to use

The developer may manually specify the Dialect to use by setting the hibernate.dialect

configuration property to the name of the specific org.hibernate.dialect.Dialect class to use.

1.2.2. Dialect resolution

Assuming a org.hibernate.connection.ConnectionProvider has been set up according to

Section 1.1, “JDBC Connections” then Hibernate will attempt to automatically determine the

Dialect to use based on the java.sql.DatabaseMetaData reported by a java.sql.Connection

obtained from that org.hibernate.connection.ConnectionProvider.

This functionality is provided by a series of

org.hibernate.dialect.resolver.DialectResolver instances registered with Hibernate

internally. Hibernate comes with a standard set of recognitions. If your application requires

extra Dialect resolution capabilities, it would simply register a custom implementation of

org.hibernate.dialect.resolver.DialectResolver as follows

Example 1.1. Registering a custom

org.hibernate.dialect.resolver.DialectResolver

    org.hibernate.dialect.resolver.DialectFactory.registerDialectResolver( "org.hibernate.example.CustomDialectResolver" );



Custom Dialects

3

Registered org.hibernate.dialect.resolver.DialectResolver are prepended to an internal

list of resolvers, so they take precedence before any already registered resolvers including the

standard one.

1.2.3. Custom Dialects

It is sometimes necessary for developers to write a custom Dialect for Hibernate to use. Generally

this is as simple as selecting a particular org.hibernate.dialect.Dialect implementation that

is closest to your needs and subclassing it and overriding where necessary.

Custom dialects may be manually specified as outlined in Section 1.2.1, “Specifying the Dialect

to use” as well as registered through a resolver as outlined in Example 1.1, “Registering a custom

org.hibernate.dialect.resolver.DialectResolver”.

1.3. Database Schema

To be continued...



4


	Hibernate Developer Guide
	Table of Contents
	Preface
	1. Get Involved
	2. Getting Started Guide

	Chapter 1. Database Access
	1.1. JDBC Connections
	1.1.1. Using connection pooling
	1.1.1.1. Using Hibernate's built-in connection pooling
	1.1.1.2. Using c3p0 for connection pooling
	1.1.1.3. Using proxool for connection pooling

	1.1.2. Using javax.sql.DataSource

	1.2. Database Dialects
	1.2.1. Specifying the Dialect to use
	1.2.2. Dialect resolution
	1.2.3. Custom Dialects

	1.3. Database Schema


