Hibernate Envers - Easy Entity Auditing

1

Hibernate Envers
Reference Documentation

3.6.10.Final

[l (=] = Vo1 < T \Y;

I @ 11] <= = 1
2. SN0 EXAMPIE . e 5
G T 0T 1 To [U1 2= Lo 7
3.1. BASIC CONFIQUIALIONciieeeiiiiii ettt e et e e b s 7

3.2. Choosing an audit SIrAteOYccuuiiiiiieiiii e e e aas 7

TR T o L1 (=1 (= o o] PPN 7

4, Logging data fOr reVISIONS ...ciuuiiiii i e e e e aa s 13
4.1. Tracking entity names modified during reviSionsccoooeeiiniiiiiinneeeiiineeecinn 15

LT O 1 1= =P 17
5.1. Querying for entities of a class at a given revisSionccceeveeieiinneiiiineecien 17

5.2. Querying for revisions, at which entities of a given class changed 18

6. Generating schema With ANT ... 21
7. Generated tables and their CONtENt ... 23
8. Audit table PartitioNing ... 25
8.1. Benefits of audit table partitioningcccooiiiiiii i 25

8.2. Suitable columns for audit table partitioningcccooiiiiiiiii 25

8.3. Audit table partitioning eXamplecccooiiiiiiiii e 26
8.3.1. Determining a suitable partitioning ColUMNcccoooviiiiiiiiiiii e 26

8.3.2. Determining a suitable partitioning schemeccoooiiiiiiiiiin e, 27

9. Building from source and teStiNgoviiiiiiiiiii e 29
9.1. BUIldING frOM SOUICEuuiiiiiiciii e e e e e e e e e e e ees 29

9.2, CONLIDULING ..ottt ettt e et e e e 29

9.3. ENVErsS iNtegration tESISuiiiiiiiiii i e 29

10. MAPPIiNgG EXCEPLIONS ovuuiiiiii ettt ettt e et e et e e e e e e e ra s 31
10.1. What isn't and will not be SUPPOrtedoviiiiiiiii i 31
10.2. What isn't and will be supported ... 31
10.3. @ONeToMany+@JOINCOIUMNoiiuiiiiiii e e e e e e e e 31

11. Migration from Envers Standalonecoooiiiiiiiiiiiiiii e 33
5 O 4 =Yg o =T (o I o7 Lo [P 33
11.2. Changes t0 CONFIQUIALIONuuuiiiiiiiii e 33
11.3. Changes to the revisSion ENtitycciiiiiiiiiii e 34

2 T | P 35

Preface

The Envers project aims to enable easy auditing of persistent classes. All that you have to do is
annotate your persistent class or some of its properties, that you want to audit, with @udi t ed.
For each audited entity, a table will be created, which will hold the history of changes made to the
entity. You can then retrieve and query historical data without much effort.

Similarly to Subversion, the library has a concept of revisions. Basically, one transaction is one
revision (unless the transaction didn't modify any audited entities). As the revisions are global,
having a revision number, you can query for various entities at that revision, retrieving a (partial)
view of the database at that revision. You can find a revision number having a date, and the other
way round, you can get the date at which a revision was commited.

The library works with Hibernate and requires Hibernate Annotations or Entity Manager. For the
auditing to work properly, the entities must have immutable unique identifiers (primary keys). You
can use Envers wherever Hibernate works: standalone, inside JBoss AS, with JBoss Seam or
Spring.

Some of the features:

1. auditing of all mappings defined by the JPA specification

2. auditing of Hibernate mappings, which extend JPA, like custom types and collections/maps of
"simple” types (Strings, Integers, etc.) (see also Chapter 10, Mapping exceptions)

3. logging data for each revision using a "revision entity"

4. querying historical data

Vi

Chapter 1.

Quickstart

If you're using JPA, when coniguring Hibernate (in per si st ence. xn), add the following event
listeners: (this will allow Envers to check if any audited entities were modified)

<persi stence-unit ...>
<provi der >or g. hi ber nat e. ej b. Hi ber nat ePer si st ence</ provi der >
<cl ass>...</class>
<properties>
<property nanme="hi bernate.dialect" ... />
<l-- other hibernate properties -->

<property nanme="hi bernate. ejb.event.post-insert"

val ue="org. hi bernat e. ej b. event . EJB3Post | nsert Event Li st ener, or g. hi ber nat e. envers. event . Audi t EVent Li st ener"

>
<property name="hi bernate. ejb. event. post-update"

val ue="org. hi bernate. ej b. event. EJIB3Post Updat eEvent Li st ener, or g. hi ber nat e. envers. event . Audi t EVent Li st ener"

>
<property nanme="hi bernate. ejb.event. post-del ete"

val ue="org. hi bernat e. ej b. event . EJB3Post Del et eEvent Li st ener, or g. hi ber nat e. envers. event . Audi t EVent Li st ener"

>
<property nanme="hi bernate. ejb.event.pre-collection-update"

val ue="or g. hi bernat e. envers. event. Audi t Event Li stener" />

<property name="hi bernate.ejb.event.pre-collection-renove"

val ue="org. hi ber nat e. envers. event . Audi t Event Li stener" />

<property nanme="hi bernate. ejb. event. post-collection-recreate"

val ue="org. hi ber nat e. envers. event. Audi t Event Li stener" />

</ properties>
</ persi stence-uni t>

If you're using Hibernate directly, add the following to hi ber nat e. cf g. xni :

<hi ber nat e- confi gurati on>
<sessi on-factory>

<listener class="org. hi bernate. envers. event. Audi t Event Li stener" type="post-insert"/>
<listener class="org. hi bernate. envers. event. Audi t Event Li stener" type="post-update"/>

<li stener class="org.hi bernate. envers. event. Audi t Event Li st ener"
<listener class="org. hi bernate. envers. event. Audi t Event Li st ener"
<l i stener class="org. hi bernate. envers. event. Audi t Event Li st ener"
<listener
recreate"/>

</ sessi on-factory>
</ hi ber nat e- conf i gurati on>

" type="post-delete"/>

type="pre-col | ecti on-update"/>
type="pre-coll ection-renmove"/>

cl ass="org. hi ber nat e. envers. event. Audi t Event Li st ener" type="post-col |l ection-

Chapter 1. Quickstart

The EJB3Post . . . EvenLi st ener s are needed, so that ejb3 entity lifecycle callback methods work
(@Post Persi st, @Post Update, @Post Renove.

Then, annotate your persistent class with @udi t ed - this will make all properties audited. For
example:

inmport org. hibernate. envers. Audi t ed;

inmport javax. persistence.Entity;

import javax. persistence. |d;

inport javax. persistence. Gener at edVal ue;
i mport javax. persi stence. Col um;

@ntity
@\wdited // that's the inportant part :)
public class Person {

@d

@=ner at edVal ue

private int id;

private String nang;
private String surnane;

@manyToOne
private Address address;

/1 add getters, setters, constructors, equals and hashCode here

And the referenced entity:

@ntity

@\wudit ed

public class Address {
@d
@=xner at edVal ue
private int id;

private String streetNane;
private Integer houseNunber;
private Integer flatNunber;

@neToMany(mappedBy = "address")
private Set<Person> persons;

/1 add getters, setters, constructors, equals and hashCode here

And that's it! You create, modify and delete the entites as always. If you look at the generated
schema, you will notice that it is unchanged by adding auditing for the Address and Person entities.
Also, the data they hold is the same. There are, however, two new tables - Addr ess_AUD and
Per son_AUD, which store the historical data, whenever you commit a transaction.

Instead of annotating the whole class and auditing all properties, you can annotate only some
persistent properties with @udi t ed. This will cause only these properties to be audited.

You can access the audit (history) of an entity using the Audi t Reader interface, which you can
obtain when having an open EntityManager.

Audi t Reader reader = AuditReader Factory. get (entityManager);
Person ol dPerson = reader.find(Person.class, personld, revision)

The T find(Cd ass<T> cls, Object prinmaryKey, Number revision) method returns an entity
with the given primary key, with the data it contained at the given revision. If the entity didn't exist
at this revision, nul | is returned. Only the audited properties will be set on the returned entity.
The rest will be nul | .

You can also get a list of revisions at which an entity was modified using the get Revi si ons
method, as well as retrieve the date, at which a revision was created using the get Revi si onDat e
method.

Chapter 2.

Short example

For example, using the entities defined above, the following code will generate revision number
1, which will contain two new Per son and two new Addr ess entities:

entityManager. get Transaction(). begin();

Address addressl = new Address("Privet Drive", 4);
Person personl = new Person("Harry", "Potter", addressl);

Address address2 = new Address("G i mmaul d Pl ace", 12);
Person person2 = new Person("Herm one", "G anger", address2);

entityManager. persi st (addressl);
entityManager. persi st (address2);
entityManager. persi st (personl);

entityManager. persi st (person2);

entityManager. get Transaction().conmit();

Now we change some entities. This will generate revision number 2, which will contain
modifications of one person entity and two address entities (as the collection of persons living at
addr ess2 and addr ess1 changes):

entityManager. get Transaction(). begin();

Address addressl = entityManager.find(Address.class, addressl.getld());
Person person2 = entityManager.find(Person.cl ass, person2.getld());

/1 Changi ng the address's house nunber
addr essl. set HouseNunber (5)

/1 And noving Hermione to Harry
person2. set Addr ess(addr ess1);

entityManager. get Transaction().conmit();
We can retrieve the old versions (the audit) easily:

Audi t Reader reader = AuditReader Factory. get(entityManager);

Person person2_revl = reader.find(Person.class, person2.getld(), 1);
assert person2_revl. get Address().equal s(new Address("G i nmuauld Pl ace", 12));

Address addressl_revl = reader.find(Address.class, addressl.getld(), 1);
assert addressl_revl. getPersons().getSize() == 1;

/] and so on

Chapter 3.

Configuration

3.1. Basic configuration

To start working with Envers, all configuration that you must do is add the event listeners to
persistence.xml, as described in the Chapter 1, Quickstart.

However, as Envers generates some entities, and maps them to tables, it is possible to set the
prefix and suffix that is added to the entity name to create an audit table for an entity, as well as
set the names of the fields that are generated.

3.2. Choosing an audit strategy

After the basic configuration it is important to choose the audit strategy that will be used to persist
and retrieve audit information. There is a trade-off is between the performance of persisting and
the performance of querying the audit information. Currently there two audit strategies:

1. The default audit strategy persists the audit data together with a start revision. For each row
inserted, updated or deleted in an audited table, one or more rows are inserted in the audit
tables, together with the start revision of its validity. Rows in the audit tables are never updated
after insertion. Queries of audit information use subqueries to select the applicable rows in the
audit tables. These subqueries are notoriously slow and difficult to index.

2. The alternative is a validity audit strategy. This strategy stores the start-revision and the end-
revision of audit information. For each row inserted, updated or deleted in an audited table,
one or more rows are inserted in the audit tables, together with the start revision of its validity.
But at the same time the end-revision field of the previous audit rows (if available) are set to
this revision. Queries on the audit information can then use 'between start and end revision'
instead of subqueries as used by the default audit strategy. The consequence of this strategy is
that persisting audit information will be a bit slower, because of the extra updates involved, but
retrieving audit information will be a lot faster. This can be improved by adding extra indexes.

3.3. Reference
In more detail, here are the properties that you can set:

Table 3.1. Envers Configuration Properties

Property name Default value Description

org.hibernate.envers.audit_table_prefix String that will be prepended
to the name of an audited
entity to create the name of
the entity, that will hold audit
information.

Chapter 3. Configuration

Property name Default value

org.hibernate.envers.audit_table AU

Description

String that will be appended
to the name of an audited
entity to create the name
of the entity, that will hold
audit information. If you
audit an entity with a table
name Person, in the default
setting Envers will generate
a Person_AUD table to store
historical data.

org.hibernate.envers.revision_fidkEWame

Name of a field in the audit
entity that will hold the revision
number.

org.hibernate.envers.revision_tyB&iEXPBEame

Name of a field in the audit
entity that will hold the type of
the revision (currently, this can
be: add, mod, del).

org.hibernate.envers.revision_onrumllection_change

Should a revision be
generated when a not-owned
relation field changes (this can
be either a collection in a one-
to-many relation, or the field
using "mappedBy" attribute in
a one-to-one relation).

org.hibernate.envers.do_not_auttiieoptimistic_locking_field

org.hibernate.envers.store_datafasedelete

When true, properties to be
used for optimistic locking,
annotated with @/er si on, will
be automatically not audited
(their history won't be stored,;
it normally doesn't make sense
to store it).

Should the entity data be
stored in the revision when
the entity is deleted (instead
of only storing the id and all
other properties as null). This
is not normally needed, as the
data is present in the last-
but-one revision. Sometimes,
however, it is easier and more
efficient to access it in the

Reference

Property name Default value Description

last revision (then the data
that the entity contained before
deletion is stored twice).

org.hibernate.envers.default_scimerthésame as normal tables) The default schema name
that should be used
for audit tables. Can
be overriden using the
@\udi t Tabl e(schema="...")
annotation. If not present, the
schema will be the same as
the schema of the normal
tables.

org.hibernate.envers.default_cataldigsame as normal tables) The default catalog name
that should be used
for audit tables. Can
be overriden using the
@\udi t Tabl e(catal og="...")
annotation. If not present, the
catalog will be the same as the
catalog of the normal tables.

org.hibernate.envers.audit_strategy.hibernate.envers.strategy.DéafhelsAudiitStnatiegy that should
be wused when persisting
audit data. The default
stores only the revision,
at which an entity was
modified. An alternative, the
org. hi bernate. envers. strategy. ValidityAud
stores both the start revision
and the end revision. Together
these define when an audit
row was valid, hence the name
ValidityAuditStrategy.

org.hibernate.envers.audit_strat®BNVENIDity end_rev_field_nam&he column name that will hold
the end revision number in
audit entities. This property is
only valid if the validity audit
strategy is used.

org.hibernate.envers.audit_stratéagjgevalidity store_revend_timeshoyld the timestamp of the
end revision be stored, until
which the data was valid, in
addition to the end revision
itself. This is useful to be able

Chapter 3. Configuration

Property name Default value Description

to purge old Audit records
out of a relational database
by using table partitioning.
Partitioning requires a column
that exists within the table.
This property is only evaluated
if the ValidityAuditStrategy is
used.

org.hibernate.envers.audit_strat®BNVENDity SEMEA_timestamp Gieldnmamename of the

timestamp of the end revision

until which the data was

valid. Only wused if the
ValidityAuditStrategy is used,

and
org.hibernate.envers.audit_strategy_validity_store
evaluates to true

Important

The following configuration options have been added recently and should be
regarded as experimental:

. org.hibernate.envers.audit_strategy
. org.hibernate.envers.audit_strategy validity_end_rev_field_name
. org.hibernate.envers.audit_strategy validity store revend_timestamp

. org.hibernate.envers.audit_strategy validity revend_timestamp_field_name

To change the name of the revision table and its fields (the table, in which the numbers of
revisions and their timestamps are stored), you can use the @evi si onEnt i ty annotation. For
more information, see Chapter 4, Logging data for revisions.

To set the value of any of the properties described above, simply add an entry to your
persi stence. xnl . For example:

<persistence-unit ...>
<provi der >or g. hi ber nat e. ej b. Hi ber nat ePer si st ence</ provi der >
<cl ass>...</class>
<properties>
<property name="hi bernate.dialect” ... />
<l-- other hibernate properties -->

10

Reference

<property name="hi bernate.ejb.event.post-insert"

val ue="ord. hi ber nat e. ej b. event . EJB3Post | nsert Event Li st ener, or g. hi ber nat e. envers. event . Audi t EVent Li st ener"
>

<property nanme="hi bernate. ejb. event. post -updat e"

val ue="org. hi ber nat e. ej b. event . EJB3Post Updat eEvent Li st ener, or g. hi ber nat e. envers. event . Audi t EVent Li st ener"
>

<property name="hi bernate. ejb. event. post-del ete"

val ue="ord. hi ber nat e. ej b. event . EJB3Post Del et eEvent Li st ener, or g. hi ber nat e. envers. event . Audi t EVent Li st ener"
>

<property nanme="hi bernate. ejb.event.pre-collection-update"
val ue="org. hi bernat e. envers. event . Audi t Event Li stener" />

<property name="hi bernate. ejb. event.pre-collection-renove"
val ue="or g. hi bernat e. envers. event. Audi t Event Li stener" />

<property name="hi bernate. ejb.event.post-collection-recreate"
val ue="org. hi bernat e. envers. event. Audi t Event Li stener" />

<property nanme="org. hi bernate. envers. versi onsTabl eSuf fi x" val ue="_V" />
<property nanme="org. hi bernate. envers. revisi onFi el dName" val ue="ver_rev" />
<l-- other envers properties -->

</ properties>

</ persi stence-uni t>

The EJB3Post . . . EvenLi st ener s are needed, so that ejb3 entity lifecycle callback methods work
(@Post Persi st, @ost Update, @Post Renove.

You can also set the name of the audit table on a per-entity basis, using the @udit Tabl e
annotation. It may be tedious to add this annotation to every audited entity, so if possible, it's
better to use a prefix/suffix.

If you have a mapping with secondary tables, audit tables for them will be generated in the same
way (by adding the prefix and suffix). If you wish to overwrite this behaviour, you can use the
@econdar yAudi t Tabl e and @econdar yAudi t Tabl es annotations.

If you'd like to override auditing behaviour of some fields/properties in an embedded component,
you can use the @udi t Overri de(s) annotation on the place where you use the component.

If you want to audit a relation mapped with @neToMany+@oi nCol umm, please see Chapter 10,
Mapping exceptions for a description of the additional @wdi t Joi nTabl e annotation that you'll
probably want to use.

If you want to audit a relation, where the target entity is not audited (that is the case for example
with dictionary-like entities, which don't change and don't have to be audited), just annotate it
with @\wdit ed(target Audi t Mode = Rel ati onTar get Audi t Mode. NOT_AUDI TED) . Then, when
reading historic versions of your entity, the relation will always point to the "current” related entity.

If you'd like to audit properties encapsulated by any subset of your entity's mapped superclasses
(which are not explicitly audited), list desired supertypes in audi t Par ent s attribute of @wudi t ed
annotation. If any @mappedSupercl ass (or any of it's properties) is marked as @wudi t ed, it's
behavior is implicitly inherited by all audited subclasses.

11

12

Chapter 4.

Logging data for revisions

Envers provides an easy way to log additional data for each revision. You simply need to annotate
one entity with @revi si onEnti ty, and a new instance of this entity will be persisted when a new
revision is created (that is, whenever an audited entity is modified). As revisions are global, you
can have at most one revisions entity.

Please note that the revision entity must be a mapped Hibernate entity.

This entity must have at least two properties:

1. an integer- or long-valued property, annotated with @Revi si onNunber . Most often, this will be
an auto-generated primary key.

2. a long- or j.u.Date- valued property, annotated with @Revi si onTi mest anp. Value of this
property will be automatically set by Envers.

You can either add these properties to your entity, or extend
or g. hi ber nat e. enver s. Def aul t Revi si onEnti ty, which already has those two properties.

When using a Dat e, instead of a | ong/ Long for the revision timestamp, take care not to use a
mapping of the property which will loose precision (for example, using @enpor al (DATE) is wrong,
as it doesn't store the time information, so many of your revisions will appear to happen at exactly
the same time). A good choice is a @enpor al (TI MESTAMP) .

To fill the entity with additional data, youll need to implement the
org. j boss. envers. Revi si onLi st ener interface. Its newRevision method will be called when
a new revision is created, before persisting the revision entity. The implementation should be
stateless and thread-safe. The listener then has to be attached to the revisions entity by specifying
it as a parameter to the @Revi si onEnti t y annotation.

Alternatively, you can use the get Current Revi si on method of the Audi t Reader interface to
obtain the current revision, and fill it with desired information. The method has a persi st
parameter specifying, if the revision entity should be persisted before returning. If set to tr ue,
the revision number will be available in the returned revision entity (as it is normally generated by
the database), but the revision entity will be persisted regardless of wheter there are any audited
entities changed. If set to f al se, the revision number will be nul | , but the revision entity will be
persisted only if some audited entities have changed.

A simplest example of a revisions entity, which with each revision associates the username of the
user making the change is:

package org.jboss. envers. exanpl e;

import org.hi bernate. envers. RevisionEntity;
inmport org. hibernate. envers. Def aul t Revi si onEntity;

inmport javax. persistence. Entity;

13

Chapter 4. Logging data for r...

@Entity

@Rrevi si onEnti t y(Exanpl eLi st ener. cl ass)

public class Exanpl eRevEntity extends Defaul t Revi sionEntity {
private String usernane;

public String getUsername() { return usernane; }
public void setUsernane(String usernane) { this.usernane = usernane; }

}

Or, if you don't want to extend any class:

package org. hi bernate. envers. exanpl e;

import org. hi bernate. envers. Revi si onNunber ;
inmport org.hibernate. envers. Revi si onTi mest anp;
import org. hi bernate. envers. RevisionEntity;

import javax. persistence.|d;
import javax. persi st ence. Gener at edVal ue;
import javax. persistence. Entity;

@ntity
@Rrevi si onEnt i t y(Exanpl eLi st ener. cl ass)
public class Exanpl eRevEntity {

@d

@=xner at edVal ue

@Rrevi si onNunber

private int id;

@Revi si onTi nest anp
private |ong tinestanp;

private String usernang;

/Il Getters, setters, equals, hashCode ...

An example listener, which, if used in a JBoss Seam application, stores the currently logged in
user username:

package org. hi bernate. envers. exanpl e;

import org. hi bernate. envers. Revi si onLi st ener;
inmport org.jboss.seam security.ldentity;
import org.jboss.seam Conponent ;

public class Exanpl eLi stener inplenents RevisionListener {
public void newRevision(Object revisionEntity) {
Exanpl eRevEntity exanpl eRevEntity = (Exanpl eRevEntity) revisionEntity;
ldentity identity = (ldentity) Conmponent.getlnstance("org.jboss.seam security.identity");

exanpl eRevEntity. set Usernane(i dentity. get Usernane());

14

Tracking entity names modified during revisions

Having an "empty" revision entity - that is, with no additional properties except the two mandatory
ones - is also an easy way to change the names of the table and of the properties in the revisions
table automatically generated by Envers.

In case there is no entity annotated with @rRevi si onEnt i t y, a default table will be generated, with
the name REVI NFO.

4.1. Tracking entity names modified during revisions

By default entity types that have been changed in each revision are not being tracked.
This implies the necessity to query all tables storing audited data in order to retrieve
changes made during specified revision. Users are allowed to implement custom mechanism
of tracking modified entity names. In this case, they shall pass their own implementation
of org. hi bernate. envers. EntityTracki ngRevi si onLi stener interface as the value of
@r g. hi bernat e. envers. Revi si onEntity annotation. EntityTracki ngRevi si onLi st ener
interface exposes one method that notifies whenever audited entity instance has been added,
modified or removed within current revision boundaries.

Example 4.1. Custom implementation of tracking entity classes modified
during revisions

Cust onEnti tyTracki ngRevi si onLi st ener. j ava

public class CustonEntityTracki ngRevi si onLi st ener
impl ements EntityTracki ngRevi si onLi stener {
@verride
public void entityChanged(C ass entityC ass, String entityNane,
Serializable entityld, RevisionType revisionType,
bj ect revisionEntity) {
String type = entityd ass. get Nane();
((Cust onmlracki ngRevi si onEntity)revisionEntity).addMdifiedEntityType(type);
}

@verride
public void newRevi si on(Obj ect revisionEntity) {

}

Cust onTr acki ngRevi si onEntity.java

@ntity
@Revi si onEntity(CustonEntityTracki ngRevi si onLi st ener. cl ass)
public class Custoniracki ngRevi sionEntity {

@d

15

Chapter 4. Logging data for r...

@zner at edVal ue
@Rrevi si onNunber
private int custom d;

@Revi si onTi nest anp
private | ong custonii nest anp;

@neToMany(mappedBy="revi si on", cascade={CascadeType. PERSI ST, CascadeType. REMOVE})
private Set<ModifiedEntityTypeEntity> nodifiedEntityTypes =
new HashSet <Modi fi edEntityTypeEntity>();

public void addModifiedEntityType(String entityd assNanme) {
nodi fi edEntityTypes. add(new Modi fi edEntityTypeEntity(this, entityd assNane));

Modi fi edEntityTypeEntity.|ava

@ntity
public class MdifiedEntityTypeEntity {

@d
@=ner at edVal ue
private Integer id;

@manyToOne
private Custonilracki ngRevi si onEntity revision;

private String entityd assNaneg;

Cust onir acki ngRevi si onEntity revEntity =

get Audi t Reader (). fi ndRevi si on(Cust onilr acki ngRevi si onEntity. cl ass, revisi onNunber);

Set <Mbdi fi edEntityTypeEntity> nodifiedEntityTypes = revEntity. get ModifiedEntityTypes()

16

Chapter 5.

Queries

You can think of historic data as having two dimension. The first - horizontal - is the state of the
database at a given revision. Thus, you can query for entities as they were at revision N. The
second - vertical - are the revisions, at which entities changed. Hence, you can query for revisions,
in which a given entity changed.

The queries in Envers are similar to Hibernate Criteria [http://www.hibernate.org/hib_docs/v3/
reference/en/html/querycriteria.html], so if you are common with them, using Envers queries will
be much easier.

The main limitation of the current queries implementation is that you cannot traverse relations.
You can only specify constraints on the ids of the related entities, and only on the "owning" side
of the relation. This however will be changed in future releases.

Please note, that queries on the audited data will be in many cases much slower than
corresponding queries on "live" data, as they involve correlated subselects.

Inthe future, queries will be improved both in terms of speed and possibilities, when using the valid-
time audit strategy, that is when storing both start and end revisions for entities. See Chapter 3,
Configuration.

5.1. Querying for entities of a class at a given revision

The entry point for this type of queries is:

Audi t Query query = get Audi t Reader (). createQuery().forEntitiesAtRevisi on(MEntity.class,
revi si onNunber) ;

You can then specify constraints, which should be met by the entities returned, by adding
restrictions, which can be obtained using the Audi t Enti ty factory class. For example, to select
only entities, where the "name" property is equal to "John":

query. add(Audi tEntity. property("name").eq("John"));
And to select only entites that are related to a given entity:

query. add(Audi tEntity. property("address").eq(rel atedEntitylnstance));
/'l or
query. add(AuditEntity.rel atedl d("address").eq(relatedEntityld));

17

http://www.hibernate.org/hib_docs/v3/reference/en/html/querycriteria.html
http://www.hibernate.org/hib_docs/v3/reference/en/html/querycriteria.html
http://www.hibernate.org/hib_docs/v3/reference/en/html/querycriteria.html

Chapter 5. Queries

You can limit the number of results, order them, and set aggregations and projections (except
grouping) in the usual way. When your query is complete, you can obtain the results by calling
the get Si ngl eResul t () or get Resul t Li st () methods.

A full query, can look for example like this:

Li st personsAt Address = get Audi t Reader (). createQuery()

5.

.forEntitiesAtRevision(Person.class, 12)

.addOr der (Audi t Entity. property("surnane"). desc())
.add(AuditEntity.rel atedl d("address"). eq(addressld))
.setFirstResult(4)

. set MaxResul t s(2)

.getResul tList();

2. Querying for revisions, at which entities of a given

class changed

Th

e entry point for this type of queries is:

Audi t Query query = get Audi t Reader (). createQuery()

.forRevisionsOEntity(MENtity.class, false, true);

You can add constraints to this query in the same way as to the previous one. There are some
additional possibilities:

1.

using Audi t Enti ty. revi si onNunber () you can specify constraints, projections and order on
the revision number, in which the audited entity was modified

. Similarly, using AuditEntity.revisionProperty(propertyNane) Yyou can specify

constraints, projections and order on a property of the revision entity, corresponding to the
revision in which the audited entity was modified

. AuditEntity.revisionType() gives you access as above to the type of the revision (ADD,

MOD, DEL).

Using these methods, you can order the query results by revision number, set projection or
constraint the revision number to be greater or less than a specified value, etc. For example, the
following query will select the smallest revision number, at which entity of class MyEnti t y with id
entityl d has changed, after revision number 42:

Nunmber revision = (Nunber) getAuditReader().createQuery()

.forRevisionsOEntity(MENtity.class, false, true)
.setProjection(AuditEntity.revisionNunber().mn())
.add(AuditEntity.id().eq(entityld))

.add(Audi tEntity. revisi onNunber (). gt(42))

18

Querying for revisions, at which entities of a given class changed

.get Si ngl eResul t ();

The second additional feature you can use in queries for revisions is the ability to maximalize/
minimize a property. For example, if you want to select the revision, at which the value of the
act ual Dat e for a given entity was larger then a given value, but as small as possible:

Nunber revision = (Nunber) getAudit Reader (). createQuery()

.forRevisionsOEntity(MEnNtity.class, false, true)

/] We are only interested in the first revision

.setProjection(AuditEntity.revisionNunber().mnmin())

.add(AuditEntity. property("actual Date"). m nim ze()
.add(AuditEntity. property("actual Date"). ge(gi venDate))
.add(AuditEntity.id().eq(givenEntityld)))

.get Singl eResult();

The mi ni mi ze() and nmaxi m ze() methods return a criteria, to which you can add constraints,
which must be met by the entities with the maximized/minimized properties.

You probably also noticed that there are two boolean parameters, passed when creating the query.
The first one, sel ect Enti ti esOnl y, is only valid when you don't set an explicit projection. If true,
the result of the query will be a list of entities (which changed at revisions satisfying the specified
constraints).

If false, the result will be a list of three element arrays. The first element will be the changed entity
instance. The second will be an entity containing revision data (if no custom entity is used, this
will be an instance of Def aul t Revi si onEnt i ty). The third will be the type of the revision (one of
the values of the Revi si onType enumeration: ADD, MOD, DEL).

The second parameter, sel ect Del et edEnti ti es, specifies if revisions, in which the entity was
deleted should be included in the results. If yes, such entities will have the revision type DEL and
all fields, except the id, nul I .

19

20

Chapter 6.

Generating schema with Ant

If you'd like to generate the database schema file with the Hibernate Tools Ant task, you'll probably
notice that the generated file doesn't contain definitions of audit tables. To generate also the audit
tables, you simply need to use or g. hi ber nat e. t ool . ant . Enver sHi ber nat eTool Task instead of
the usual or g. hi ber nat e. t ool . ant . Hi ber nat eTool Task. The former class extends the latter,
and only adds generation of the version entities. So you can use the task just as you used to.

For example:

<target nanme="schenmexport" depends="buil d-denp"
description="Exports a generated schema to DB and file">
<t askdef nane="hi ber nat et ool "
cl assnanme="or g. hi bernat e. t ool . ant . Enver sHi ber nat eTool Task"
cl asspat href ="bui | d. denp. cl asspath"/>

<hi ber nat et ool destdir=".">
<cl asspat h>
<fileset refid="1ib.hibernate" />
<path | ocation="${build.demp.dir}" />
<path location="${build. main.dir}" />
</ cl asspat h>
<j paconfi guration persistenceunit="Consol ePU' />
<hbn2ddl|
drop="fal se"
create="true"
export="fal se"
out put fi | ename="ver si oni ng-ddl . sql "
delimter=";"
format="true"/>
</ hi ber nat et ool >
</target>

Will generate the following schema:

create table Address (
idinteger generated by default as identity (start with 1),
fl at Nunber integer,
houseNunber integer,
street Name var char (255),
primary key (id)
DE

create table Address_AUD (
idinteger not null,
REV i nteger not null,
fl at Nunber integer,
houseNunber integer,
street Name var char (255),
REVTYPE ti nyint,
primary key (id, REV)

21

Chapter 6. Generating schema ...

DE

create table Person (
id integer generated by default as identity (start with 1),
name var char (255),
surnane var char (255),
address_i d integer,
primary key (id)
)

create table Person_AUD (
idinteger not null,
REV integer not null,
name var char (255),
surnane var char (255),
REVTYPE ti nyint,
address_i d integer,
primary key (id, REV)

DE

create table REVINFO (
REV integer generated by default as identity (start with 1),
REVTSTMP bi gi nt,
primary key (REV)

)

alter table Person
add constrai nt FK8E488775E4C3EA63
foreign key (address_id)
ref erences Address;

22

Chapter 7.

Generated tables and their content

For each audited entity (that is, for each entity containing at least one audited field), an audit table
is created. By default, the audit table's name is created by adding a "_AUD" suffix to the original
name, but this can be overriden by specifing a different suffix/prefix (see Chapter 3, Configuration)
or on a per-entity basis using the @udi t Tabl e annotation.

The audit table has the following fields:

1. id of the original entity (this can be more then one column, if using an embedded or multiple id)
2. revision number - an integer

3. revision type - a small integer

4. audited fields from the original entity

The primary key of the audit table is the combination of the original id of the entity and the revision
number - there can be at most one historic entry for a given entity instance at a given revision.

The current entity data is stored in the original table and in the audit table. This is a duplication of
data, however as this solution makes the query system much more powerful, and as memory is
cheap, hopefully this won't be a major drawback for the users. A row in the audit table with entity
id ID, revision N and data D means: entity with id ID has data D from revision N upwards. Hence,
if we want to find an entity at revision M, we have to search for a row in the audit table, which has
the revision number smaller or equal to M, but as large as possible. If no such row is found, or a
row with a "deleted" marker is found, it means that the entity didn't exist at that revision.

The "revision type" field can currently have three values: 0, 1, 2, which means, respectively, ADD,
MOD and DEL. A row with a revision of type DEL will only contain the id of the entity and no data
(all fields NULL), as it only serves as a marker saying "this entity was deleted at that revision".

Additionaly, there is a "REVINFQO" table generated, which contains only two fields: the revision id
and revision timestamp. A row is inserted into this table on each new revision, that is, on each
commit of a transaction, which changes audited data. The name of this table can be configured, as
well as additional content stored, using the @Revi si onEnt i t y annotation, see Chapter 4, Logging
data for revisions.

While global revisions are a good way to provide correct auditing of relations, some people have
pointed out that this may be a bottleneck in systems, where data is very often modified. One viable
solution is to introduce an option to have an entity "locally revisioned", that is revisions would be
created for it independently. This wouldn't enable correct versioning of relations, but wouldn't also
require the "REVINFO" table. Another possibility if to have "revisioning groups"”, that is groups of
entities which share revision numbering. Each such group would have to consist of one or more
strongly connected component of the graph induced by relations between entities. Your opinions
on the subject are very welcome on the forum! ;)

23

24

Chapter 8.

Audit table partitioning

8.1. Benefits of audit table partitioning

Because audit tables tend to grow indefinitely they can quickly become really large. When the
audit tables have grown to a certain limit (varying per RDBMS and/or operating system) it makes
sense to start using table partitioning. SQL table partitioning offers a lot of advantages including,
but certainly not limited to:

1. Improved query performance by selectively moving rows to various partitions (or even purging
old rows)

2. Faster data loads, index creation, etc.

8.2. Suitable columns for audit table partitioning

Generally SQL tables must be partitioned on a column that exists within the table. As a rule it
makes sense to use either the end revision or the end revision timestamp column for partioning
of audit tables.

Chapter 3, Configuration

The reason why the end revision information should be used for audit table partioning is based on
the assumption that audit tables should be partionioned on an 'increasing level of interestingness',
like so:

1. A couple of partitions with audit data that is not very (or no longer) interesting. This can be
stored on slow media, and perhaps even be purged eventually.

25

Chapter 8. Audit table partit...

2. Some partitions for audit data that is potentially interesting.

3. One partition for audit data that is most likely to be interesting. This should be stored on the
fastest media, both for reading and writing.

8.3. Audit table partitioning example

In order to determine a suitable column for the ‘increasing level of interestingness', consider a
simplified example of a salary registration for an unnamed agency.

Currently, the salary table contains the following rows for a certain person X:

Table 8.1. Salaries table

Year Salary (USD)
2006 3300
2007 3500
2008 4000
2009 4500

The salary for the current fiscal year (2010) is unknown. The agency requires that all changes in
registered salaries for a fiscal year are recorded (i.e. an audit trail). The rationale behind this is
that decisions made at a certain date are based on the registered salary at that time. And at any
time it must be possible reproduce the reason why a certain decision was made at a certain date.

The following audit information is available, sorted on in order of occurrence:

Table 8.2. Salaries - audit table

Year Revision type Revision Salary (USD) End revision
timestamp timestamp

2006 ADD 2007-04-01 3300 null

2007 ADD 2008-04-01 35 2008-04-02

2007 MOD 2008-04-02 3500 null

2008 ADD 2009-04-01 3700 2009-07-01

2008 MOD 2009-07-01 4100 2010-02-01

2008 MOD 2010-02-01 4000 null

2009 ADD 2010-04-01 4500 null

8.3.1. Determining a suitable partitioning column

To partition this data, the 'level of interestingness' must be defined. Consider the following:

26

Determining a suitable partitioning scheme

1. For fiscal year 2006 there is only one revision. It has the oldest revision timestamp of all audit
rows, but should still be regarded as interesting because it is the latest modification for this
fiscal year in the salary table; its end revision timestamp is null.

Also note that it would be very unfortunate if in 2011 there would be an update of the salary
for fiscal year 2006 (which is possible in until at least 10 years after the fiscal year) and the
audit information would have been moved to a slow disk (based on the age of the revision
timestamp). Remember that in this case Envers will have to update the end revision timestamp
of the most recent audit row.

2. There are two revisions in the salary of fiscal year 2007 which both have nearly the same
revision timestamp and a different end revision timestamp. On first sight it is evident that the
first revision was a mistake and probably uninteresting. The only interesting revision for 2007
is the one with end revision timestamp null.

Based on the above, it is evident that only the end revision timestamp is suitable for audit table

partitioning. The revision timestamp is not suitable.

8.3.2. Determining a suitable partitioning scheme

A possible partitioning scheme for the salary table would be as follows:

1. end revision timestamp year = 2008

This partition contains audit data that is not very (or no longer) interesting.
2. end revision timestamp year = 2009

This partition contains audit data that is potentially interesting.
3. end revision timestamp year >= 2010 or null

This partition contains the most interesting audit data.

This partitioning scheme also covers the potential problem of the update of the end revision
timestamp, which occurs if a row in the audited table is modified. Even though Envers will update
the end revision timestamp of the audit row to the system date at the instant of modification, the
audit row will remain in the same partition (the 'extension bucket’).

And sometime in 2011, the last partition (or 'extension bucket’) is split into two new partitions:

1. end revision timestamp year = 2010
This partition contains audit data that is potentially interesting (in 2011).
2. end revision timestamp year >= 2011 or null

This partition contains the most interesting audit data and is the new 'extension bucket'.

27

28

Chapter 9.

Building from source and testing

9.1. Building from source

Envers, as a module of Hibernate, uses the standard Hibernate build. So all the usual build targets
(compile, test, install) will work.

The public Hibernate Git repository is hosted at GitHub and can be browsed using GitHub [https://
github.com/hibernate/hibernate-core]. The source can be checked out using either

git clone https://github. com hi bernate/ hi bernate-core hibernate-core.qgit
git clone git://github.cont hi bernate/hibernate-core.git

9.2. Contributing

If you want to contribute a fix or new feature, either:

 use the GitHub fork capability: clone, work on a branch, fork the repo on GitHub (fork button),
push the work there and trigger a pull request (pull request button).

« use the pure Git approach: clone, work on a branch, push to a public fork repo hosted
somewhere, trigger a pull request (git pul | -request)

« provide a good old patch file: clone the repo, create a patch with git format-patch or diff and
attach the patch file to JIRA

9.3. Envers integration tests

The tests use, by default, use a H2 in-memory database. The configuration file can be found in
src/test/resources/ hi bernate.test.cfg. xnl.

The tests use TestNG, and can be found in the org. hi bernat e. envers. test.integration
package (or rather, in subpackages of this package). The tests aren't unit tests, as they don't test
individual classes, but the behaviour and interaction of many classes, hence the name of package.

A test normally consists of an entity (or two entities) that will be audited and extends the
Abstract EntityTest class, which has one abstract method: conf i gur e(Ej b3Confi gurati on).
The role of this method is to add the entities that will be used in the test to the configuration.

The test data is in most cases created in the "initData" method (which is called once before the
tests from this class are executed), which normally creates a couple of revisions, by persisting
and updating entities. The tests first check if the revisions, in which entities where modified are

29

https://github.com/hibernate/hibernate-core
https://github.com/hibernate/hibernate-core
https://github.com/hibernate/hibernate-core

Chapter 9. Building from sour...

correct (the testRevisionCounts method), and if the historic data is correct (the testHistoryOfXxx
methods).

30

Chapter 10.

Mapping exceptions

10.1. What isn't and will not be supported

Bags (the corresponding Java type is List), as they can contain non-unique elements. The reason
is that persisting, for example a bag of String-s, violates a principle of relational databases: that
each table is a set of tuples. In case of bags, however (which require a join table), if there is
a duplicate element, the two tuples corresponding to the elements will be the same. Hibernate
allows this, however Envers (or more precisely: the database connector) will throw an exception
when trying to persist two identical elements, because of a unique constraint violation.

There are at least two ways out if you need bag semantics:

1. use an indexed collection, with the @ ndexCol urm annotation, or

2. provide a unique id for your elements with the @ol | ect i onl d annotation.

10.2. What isn't and will be supported

1. collections of components

103 @DneTol\/any‘l‘@oi nCol umm

When a collection is mapped using these two annotations, Hibernate doesn't generate a join table.
Envers, however, has to do this, so that when you read the revisions in which the related entity
has changed, you don't get false results.

To be able to name the additional join table, there is a special annotation: @udi t Joi nTabl e,
which has similar semantics to JPA's @oi nTabl e.

One special case are relations mapped with @neToMany+@oi nCol uim on the one side,
and @manyToOne+@oi nCol uim(i nsert abl e=fal se, updat abl e=fal se) on the many side.
Such relations are in fact bidirectional, but the owning side is the collection (see
alse here [http://docs.jboss.org/hibernate/stable/annotations/reference/en/html_single/#entity-
hibspec-collection-extratype]).

To properly audit such relations with Envers, you can use the @udit MappedBy annotation.
It enables you to specify the reverse property (using the mappedBy element). In case of
indexed collections, the index column must also be mapped in the referenced entity (using
@ol um(i nsert abl e=f al se, updat abl e=f al se), and specified using posi ti onMappedBy. This
annotation will affect only the way Envers works. Please note that the annotation is experimental
and may change in the future.

31

http://docs.jboss.org/hibernate/stable/annotations/reference/en/html_single/#entity-hibspec-collection-extratype
http://docs.jboss.org/hibernate/stable/annotations/reference/en/html_single/#entity-hibspec-collection-extratype
http://docs.jboss.org/hibernate/stable/annotations/reference/en/html_single/#entity-hibspec-collection-extratype

32

Chapter 11.

Migration from Envers standalone

With the inclusion of Envers as a Hibernate module, some of the public APl and configuration
defaults changed. In general, "versioning" is renamed to "auditing" (to avoid confusion with the
annotation used for indicating an optimistic locking field - @/er si on).

Because of changing some configuration defaults, there should be no more problems using Envers
out-of-the-box with Oracle and other databases, which don't allow tables and field names to start
with "_".

11.1. Changes to code

Public API changes involve changing "versioning" to "auditing". So, @ersi oned became
@udi t ed; @/er si onsTabl e became @udi t Tabl e and so on.

Also, the query interface has changed slightly, mainly in the part for specifying restrictions,
projections and order. Please refer to the Javadoc for further details.

11.2. Changes to configuration

First of all, the name of the event listener changed. It
is now named org. hi bernat e. envers. event . Audi t Event Li st ener, instead of
org. j boss. envers. event . Ver si onsEvent Li st ener . So to make Envers work, you will have to
change these settings in your per si st ence. xnl or Hibernate configuration.

Secondly, the names of the audit (versions) tables and additional auditing (versioning) fields
changed. The default suffix added to the table name is now _AUD, instead of _ver si ons. The name
of the field that holds the revision number, and which is added to each audit (versions) table, is
now REV, instead of _r evi si on. Finally, the name of the field that holds the type of the revision,
iS now REVTYPE, instead of _rev_t ype.

If you have a schema generated with the old version of Envers, you will have to set those
properties, to use the new version of Envers without problems:

<persistence-unit ...>

<provi der>org. hi ber nat e. ej b. Hi ber nat ePer si st ence</ provi der >
<class>...</cl ass>

<properties>

<property nanme="hi bernate.dialect" ... />
<l-- other hibernate properties -->
<!-- Envers listeners -->

<property name="or g. hi bernate. envers. audi t Tabl eSuf fi x" val ue="_versi ons" />
<property nanme="org. hi bernate. envers. revisi onFi el dName" val ue="_revision" />
<property nanme="org. hi bernate. envers. revisionTypeFi el dNane" val ue="_rev_type" />
<l-- other envers properties -->

</ properties>

33

Chapter 11. Migration from En...

</ persi stence-unit>

The or g. hi ber nat e. enver s. doNot Audi t Opt i mi sti cLocki ngFi el d property is now by default
true, instead of f al se. You probably never would want to audit the optimistic locking field. Also,
the or g. hi ber nat e. enver s. war nOnUnsupport edTypes configuraiton option was removed. In
case you are using some unsupported types, use the @it Audi t ed annotation.

See Chapter 3, Configuration for details on the configuration and a description of the configuration
options.

11.3. Changes to the revision entity

This section applies only if you don't have a custom revision entity. The name of the revision entity
generated by default changed, so if you used the default one, you'll have to add a custom revision
entity, and map it to the old table. Here's the class that you have to create:

package org. hi bernate. envers. exanpl e;

import org. hi bernate. envers. Revi si onNunber ;
inmport org.hibernate. envers. Revi si onTi mest anp;
import org.hibernate. envers. RevisionEntity;

import javax. persistence. |d;

import javax. persi stence. Gener at edVal ue;
inmport javax. persistence. Entity;

i mport javax. persi st ence. Col um;

inport javax. persistence. Tabl e;

@ntity
@Rrevi si onEntity
@rabl e(nane="_revi si ons_i nfo")
public class Exanpl eRevEntity {
@d
@=ner at edVal ue
@Revi si onNunber
@ol um(nanme="revi si on_i d")
private int id;

@Revi si onTi nest anp
@Col utm(nane="revi si on_ti nest anmp")

private long tinestanp;

/] Cetters, setters, equals, hashCode ...

34

Chapter 12.

Links

Some useful links:

1.

2.

3.

Hibernate [http://hibernate.org]
Forum [http://community.jboss.org/en/envers?view=discussions]

Anonymous SVN [http://anonsvn.jboss.org/repos/hibernate/core/trunk/envers/]

adding issues concerning Envers, be sure to select the "envers" component!)

. IRC channel [irc://irc.freenode.net:6667/envers]
. Blog [http://www.jboss.org/feeds/view/envers]

. FAQ [https://[community.jboss.org/wiki/EnversFAQ]

. JIRA issue tracker [http://opensource.atlassian.com/projects/hibernate/browse/HHH] (when

35

http://hibernate.org
http://hibernate.org
http://community.jboss.org/en/envers?view=discussions
http://community.jboss.org/en/envers?view=discussions
http://anonsvn.jboss.org/repos/hibernate/core/trunk/envers/
http://anonsvn.jboss.org/repos/hibernate/core/trunk/envers/
http://opensource.atlassian.com/projects/hibernate/browse/HHH
http://opensource.atlassian.com/projects/hibernate/browse/HHH
irc://irc.freenode.net:6667/envers
irc://irc.freenode.net:6667/envers
http://www.jboss.org/feeds/view/envers
http://www.jboss.org/feeds/view/envers
https://community.jboss.org/wiki/EnversFAQ
https://community.jboss.org/wiki/EnversFAQ

36

	Hibernate Envers - Easy Entity Auditing
	Table of Contents
	Preface
	Chapter 1. Quickstart
	Chapter 2. Short example
	Chapter 3. Configuration
	3.1. Basic configuration
	3.2. Choosing an audit strategy
	3.3. Reference

	Chapter 4. Logging data for revisions
	4.1. Tracking entity names modified during revisions

	Chapter 5. Queries
	5.1. Querying for entities of a class at a given revision
	5.2. Querying for revisions, at which entities of a given class changed

	Chapter 6. Generating schema with Ant
	Chapter 7. Generated tables and their content
	Chapter 8. Audit table partitioning
	8.1. Benefits of audit table partitioning
	8.2. Suitable columns for audit table partitioning
	8.3. Audit table partitioning example
	8.3.1. Determining a suitable partitioning column
	8.3.2. Determining a suitable partitioning scheme

	Chapter 9. Building from source and testing
	9.1. Building from source
	9.2. Contributing
	9.3. Envers integration tests

	Chapter 10. Mapping exceptions
	10.1. What isn't and will not be supported
	10.2. What isn't and will be supported
	10.3. @OneToMany+@JoinColumn

	Chapter 11. Migration from Envers standalone
	11.1. Changes to code
	11.2. Changes to configuration
	11.3. Changes to the revision entity

	Chapter 12. Links

