LUMA Coding Standards

Last update: 18" April 2017

Purpose

This document sets out the rules associated with formatting, design and organisation of code which
contributes to LUMA. The implementation of these rules ensures standardisation across all
contributions of the development team. In other words, new features written into the code should
be developer-agnostic from an appearance perspective. The specification of these rules prioritise
code readability and architectural comprehension over efficiency and optimisation. This is due to the
fact the LUMA is an engineering package, developed for and by engineers and not computer
scientists or software engineers.

Caveat

As LUMA has evolved over time, there are numerous exceptions to these coding standards
throughout the source code. With each release, many of these exceptions are being updated to
reflect the new coding standards but this will take time. If all new code follows the conventions then
in time we will get the desired homogeneity.

Standards

Y= ol o TSP P PR PPPTTOPPRPRRE 2
IR I CY o Y- o SRRSOt 2
167 0010 0= o | &3P PP P PPN 2
Brackets and BraCescooueiiiiiieiieieeese ettt sttt ettt et st r e e eaeeeane s 2
LAY a1 I o F= ol ISR 2
(0foT o] d o] W ol T} T @oT 0 o] o Y- Yot fl o] f s o U PP 3
LIRS LISTS. .o utteuteertteitte ettt ettt ettt b e bt e bt s at e et e et e et e e ebeesabesab e et e e abe e bt e bt e nbeesaeeenteentean 3
FIlE STIUCTUIE ...ttt st st st ettt e e bt e s it e st e st e e bt e b e e b e e smeesmeeeneeenneen 3
T A (T AR T=L 101 S TR TP TR SRR RRRR 4
DOCUMEBNTATION ...ttt e s e e et e e s sbe e e e s s be e e e s sreneesereeeessanee 4
N EE Y0 01 g T =4 @0 V=T a1 o o 3Nt 5
SEPUCTUIES ..t et e st e e s et e e s b e e e s e n b e e e s e nr e e e s e nr e e e s enreresennrenes 5
U] o Lol o Co =T ot 1o IR od a1V | (T RN 5
D T=T o] ¢ <Tor-) A o] o HE PP PTPPPPPPPPPPRPPPPPRt 5
[= 1o Koo Yo [T o= SRRt 6
(3 (e Lo [T o CTUE T o PSPPSRSO 6
PACEES i ieieeeeeeeeeeeeeeeeeeee e e ee aaaaaaeaaaaaaaaaaaaaaaaaaaaaaaaeeaaaaaaaaaaaaataeaaaaaaaeeaaatereeerererereeans 6

DTSy i aT=To l 21 (ool ST TR 6

Macros
All LUMA pre-processor macro definitions should be capitalised, be prefixed by L and have words
separated by and underscore. Definitions should not have numbers in their names. E.g.

#tdefine L_NO_FLOW

Line Length
Wherever possible, lines should not exceed 81 columns to maximise readability.

Comments
Single line comments should leave a space between the start of the comment and the double slash.
Example

// My Comment

Multi-line comments should use the “java-style” syntax with repeated asterisks. Example:
/* My multi-line...

* . ..Comment. */

Brackets and Braces
Braces, used to define code blocks should always be aligned and should be started on a new line for
clarity. This principle should also extend to for loops and other commonly used constructs. Example:

void myMethod(...)
{

}

// etc.

No extra white space is needed when using parentheses and should be used in-line unless the
expression they encompass is large or exceeds the line length guidance. In such cases, the
parentheses may be split across lines like braces for clarity. Example:

void myMethod(argl, arg2, ..

..argn..,
..argnn);

If possible, statements should be aligned with parentheses aligned like this:

if (
condl &&
cond2 &&..
..condn
)
{
// etc.
}
White Space

White space is encouraged to improve readability. In particular, leave a space after the comma in
multi-argument method calls and also in between numerical operators. Example:

// Arithmetic
mySize = N_1lim * M_lim;

// Arguments
myMethod(a, b, c);

Control Flow Compact Form

The compact form of single line body control flow statements (without the braces) can be used if it
improves readability and obeys the line length guidance but should be on separate lines to facilitate
debugging. Example

// First branch

if (short condition)
doSomething();

// Second branch
else
doSomethingElse();

Ternary syntax may also be used e.g.

Variable = (condition) ? valuel : value2;

Initialiser Lists
Initialiser lists should be used wherever possible to simplify constructors. For readability, the
preceding colon should be placed on the next line. Example:

MyClass: :MyClass()
: superMethod(), memberl(argl)

{
}

// etc.

File Structure

LUMA is modularised. It is split into a number of class-based units that contain capability. The
lattices and all their data is maintain in a hierarchy of GridObj classes. Three singletons act as
managers MpiManager, GridManager and ObjectManager. Utilities are provided by the static
GridUtils class which should not be instantiated. If new functionality cannot be rationalised as an
extension of these existing units then a new class should be designed and created. The emphasis
here is on design. When implementing a new class, time must be spent understanding the
behaviour, interoperability and reusability of the class and its functionality.

Grid Class.

G
Class

= Members
8 _o_fgaout

@ _LBM _sppiyBFL opt
@, _LBM _coalesce_opt

_LBM_collide_opt

LBM _equilibrium_opt

_LBM explose_opt

S, _LBM_forceGaid_opt

_LBM_macro_opt

@ _LBM_stresm_opt

& -GraOhj
be_appiyen

> bx_apphylounceBack

be_applyExtrapolation

be_apphyibe

be_apphyRegularised

B¢ applyspechefiect

Coarselims

CoarselimsY

CoarselimsZ

ah

at
'

teg

New

fomce i

force_syz

gravity

GrigObj (+ 2 overioads)
io_fgacut

io_hdfs

o fite

i0_prabeQutput
io_restart

o_textout

Klim

LatTyp
LBM_addsubGrid

2P LS LN 0TI L L0000

eee

ectoe

eceee

evel
Mlim
Mim

omegs
parentGiid
refinement satio
regian_number

ho

tho_timeay

subGrid

t
tmeaymai_overhead
timeay_timestep

i timeay
uiu)_timeay

uret

wyin

XOrigin

CEETEL I LA EL LT EEEERCEINEREEODDOO0E0D0D

Zngin
ZPos

MpiManager

Class

= Members
~MpiManager
buffer_rac
bufler_ser
cRankSizeX
cRanksizeY
cRankSize?
gestroyinstance
dimensions

f bufer_recy
 buler_sendt
getinstance

ttoteeosEREED

jogout

TR

mpi_buildCommunicators.
mpi_communicate
mpi_getOpposite
mpl_gridbuild

mpl_init
mpi_updateloadinfo
mpi_writeout_ buf
MpiManager

neighbour_vectors
rank coorcs
rank_core_edge
recw_Jayer pos
recy_stat
send_requests

send_stat
sender Jayer_pas
SubGria_comem + 1 not sha.

CPELEEELELIELEDNOOODOBE D

= Nested Types

butfer struct "
Siruct

= Members
® level
@ region
* size

Iayer_edges B

St

= Members
e x
v
ez

Manager Classes
(singletons)

ObjectManager »

Clss

= Members
®, Grids
ObjectManager
addBouncebackCbject
bbbForceOnCbiectX
bbbForceOnCtyecty
bbbForceOnCbject?
bBbOnGriLevel
bbbOnGridReg
computeLiftDrag (+ 1 overlo.
debugstream
destroyinstance

ER RN

°
@

* prestrean
getinstance [+ 1 overioad)

ipen bangec
iom_bicgstab
ibm_computeforce
iom_deltaKemel
o fincEpsilon

B b findsuppon
initialise

positonUpdateGroup
ibm_spread

@ iowrteliNDrag
@ me

pBody

resetMomeniodyforces
% toggleDebugStieam
= Nested Types

GeomPacked A
Clss

Members
~GeomPacked
body.centre x

body Jength

body start_x

body start y

bogyiD

clamped

fileHame
GeomPacked (+ 1 overl
moveProperty

abjtype

on_gnd_lev
on_grid_reg

I EEEEEEE]

[EEEEE]

ObjectManager (+ 1 overioad

GridManager 5

Class

= Members

GrigManager
2, ereateWritsbleDstaStore.

® destroyinstance
getinstance

. global_edges
. global_size

% GridManager
Grids

. local_size

ALocaiCoaresize

o

Data Structures

subgrid_tlayer_key (+ 1

MarkerData A

claaz

= Members
~MarkerData

e D

@ isvalid
®

& MarkerData (+ 1 overloa

-

@ level
@ region
@ witsble_data count

Static Helper Library Body Classes
GridUtils ~ Bady<MarkerType=
class Torglste clasz
= Members = Members

@, _Owner
@ 00 o -Booy
@ createQutputDirectory ®, acdMarker
@ crossprod ® Body(+ 4 overloads
© dir_reflect &, builgFremCloud
& diide ©, closed_surace
@ dotprod ®, deleteOftRankMarkers
@ downToLimit<NumTypes @, deleteRecvlayerMarkers
@ factorial<humTypes o, getMarkerDats
@ getCoarselndices i

o, isinVoxe

@ getEnclosingVesel (+ 1 overl,

v getine:

isvoxeMankerioel

s geiGrd ©, marker
getpiDirection #. awningRank
s geiOppoite ©, passTovoxeiFilter
% Gridutits ®. spacing
® intersecisfefinediegion ©, witeVibosiion
@ isOffGrid a
® isOnRecuayer (+ 1 overload) public
@ isOnSenderlaver (+ 1 averlo, e =y
@ isOnThisRank (- 1 overload i
© isOnTransitionLayer (+ 1 ave. + Body<BiMarkers
® isOvenapPenosic
@ linspace = Members
© logfile
@ matrx_multiply (+ 4 overioads)
& nomaliseTolink 1 averlaad)
® onespace foreeSurfseeClosure
path sr
@ readvelocityframfile
& sateGeiRank
@ sgeaCopy<humiype> [P—
® subiract
@ upToZero<humType>
® weomultiply
@ wecnom [+ 5 overioads]
Marker A
s
= Members
o -Marer
. 6
e i
® Marker (+ 1 cverload)
@ position
o s
* suppj
© sppk

@ supportsank
pubii public
BFLMarker a 1BMarier
clszs cisz
+ wacker * Marker
= Members = Members
@ -BFLMarker © -mMaker
@ BFLMarker {+ 1 overload) @, deltaval
. forceX *, desired vel
@, forceY @, dilation
@, forceZ . epsion
9, fuid v
®, forcenz
© 1BMarker (+ 1 cverload)
®, local_area.
@, pesition_old

pbiec
18Body ”
s
= BedysiEhisrker
= Members
© ~i88ady
1BBody (+ 4 overioads)

9, nitialise

@, isFlexible
@, isMovable

Units Management

Gridunits a
o

= Members

© ~Griauaits

® nuaznuibm<T>
© ud2ulbmeTs
© ulatzuphys<T>

Vector Class

Wector<GenTyp= A
Template Class
2 vactor<GanTy>

The class is declared in a *.h header file and, unless it is templated, implemented in one or more
* cpp files. These files must be named using the convention given in Naming Conventions.

Getters / Setters
The use of getters and setters for private information should be avoided as it increases code
complexity. Consider making a class a friend class if private access is needed or consider redesigning

the class.

Documentation
LUMA uses doxygen for documentation. All classes must be documented at declaration in the *.h
header file. Member variables must be documented in the header file. However, member methods
must only be documented in the *.cpp file. A simple comment can be used in the header file without
the doxygen syntax. The method documentation block must use tab alignment for clarity, e.g.

[FAF Rk s ok sk ok sk sk sk ok ook sk ok sk ok sk sk ok ok sk sk sk sk ok sk ok sk sk sk sk sk ok ko sk ok sk stk sk ok ok skok sk ok sk sk ok sk ok ok ok ok ok

/// \brief Constructor for a sub-grid.

/17

/// This is not called directly but by the addSubGrid() method which
/// first performs a check to see if a sub-grid is required.

/17

/// \param RegionNumber ID indicating the region of nested refinement to which
/17 this sub-grid belongs.

/// \param pGrid pointer to parent grid.

The copyright / IP protection header should be included in every source file (*.h or *.cpp).

Naming Conventions
Common conventions for naming are as follows:

e C(Classes (including structures) must start with an upper-case letter.

e Member methods must use camel-case with a lower-case initial letter.
e Member variables must use camel-case with an upper-case initial letter
e Macros are all caps and spaced by underscores.

e Template arguments should start with an upper-case letter.

When creating new cpp files, each file must be used to group implementation of methods with a
common theme. For example, /0 methods can be grouped into their own file so those methods are
easier to find in the source code. This common theme must be appended to the class name as part
of the file name. e.g. for the GridObj class, I/0 methods are grouped in the file GridObj_ops_io.cpp.
Furthermore, the method should prefix the common theme e.g.

GridObj::io_readFromFile();

Structures

Structures should be used to pack and pass data to keep the number of arguments in external
methods to a minimum. This is particularly relevant for I/O operations. A structure should be used
where the proposed class would contain just data and no behaviour (i.e. no methods except the
constructor/destructor). If the data is only to be used within a given class, the structure should be
nested inside the class rather than declared as a separate h + cpp file combination.

Public, Protected, Private

All data in a class should initially be set to private access and only made protected/public as
required. The use of getters and setters are discouraged as is unnecessary use of the friend keyword
which should ideally be restricted for manager singletons only which are over-arching. Public data
should be grouped at the top of a class declaration, followed by protected followed by private for
visibility.

Deprecation
LUMA operates a deprecation model. Methods or variables that are no-longer required are first
marked as deprecated using the macro, for example

DEPRECATED void bc_applyBounceBack(int label, int i, int j, int k);

The marked item will remain deprecated for one minor point release before being removed on the
next point release. Do not simply delete components of classes without using the deprecation model
to avoid breaking other parts of the code.

Hard-coding

Data should never be hard-coded. Any hard-coded information should be specified as a macro
through the definitions file. The specification of initial values for member variables is acceptable but
must be documented.

Header Guards
Header guards must always be used, even if

#tpragma once
Is specified. This is for consistency. For example,

#ifndef GRIDOBJI_H
#define GRIDOBJ_H

// etc..

#tendif

Spacers
Methods within a file should be separated by an 80-character spacer

// >k >k 3k 3k >k 5k 3k >k 5k 5k %k >k 5k >k >k 5k 5k %k >k 5k >k >k 5k >k >k 5k 5k %k 5k 5k 3k >k 5k 3k >k 5k 3k >k >k 5k %k >k 5k 3k >k 5k 3k >k >k 5k >k >k 5k >k >k >k 3k >k >k 5k >k >k >k 3k >k >k 5k %k %k 5k >k k >k >k k ok

Defined Blocks
Pre-processor block defines, if nested should use a series of comments at the end of the definition to
identify matching pairs. E.g.

#ifdef L_BUILD_FOR_MPI
// etc

#ifdef L_HDF_DEBUG
// etc

#endif // L_HDF_DEBUG

#endif // L_BUILD_FOR_MPI

