
LUMA Coding Standards
Last update: 18 t h April 2017

Purpose
This document sets out the rules associated with formatting, design and organisation of code which

contributes to LUMA. The implementation of these rules ensures standardisation across all

contributions of the development team. In other words, new features written into the code should

be developer-agnostic from an appearance perspective. The specification of these rules prioritise

code readability and architectural comprehension over efficiency and optimisation. This is due to the

fact the LUMA is an engineering package, developed for and by engineers and not computer

scientists or software engineers.

Caveat
As LUMA has evolved over time, there are numerous exceptions to these coding standards

throughout the source code. With each release, many of these exceptions are being updated to

reflect the new coding standards but this will take time. If all new code follows the conventions then

in time we will get the desired homogeneity.

Standards
Macros .. 2

Line Length .. 2

Comments ... 2

Brackets and Braces .. 2

White Space .. 2

Control Flow Compact Form ... 3

Initialiser Lists .. 3

File Structure ... 3

Getters / Setters .. 4

Documentation ... 4

Naming Conventions ... 5

Structures .. 5

Public, Protected, Private.. 5

Deprecation .. 5

Hard-coding ... 6

Header Guards .. 6

Spacers .. 6

Defined Blocks ... 6

Macros
All LUMA pre-processor macro definitions should be capitalised, be prefixed by L_ and have words

separated by and underscore. Definitions should not have numbers in their names. E.g.

#define L_NO_FLOW

Line Length
Wherever possible, lines should not exceed 81 columns to maximise readability.

Comments
Single line comments should leave a space between the start of the comment and the double slash.

Example

// My Comment

Multi-line comments should use the “java-style” syntax with repeated asterisks. Example:

/* My multi-line...
 * ...Comment. */

Brackets and Braces
Braces, used to define code blocks should always be aligned and should be started on a new line for

clarity. This principle should also extend to for loops and other commonly used constructs. Example:

void myMethod(…)
{
 // etc.
}

No extra white space is needed when using parentheses and should be used in-line unless the

expression they encompass is large or exceeds the line length guidance. In such cases, the

parentheses may be split across lines like braces for clarity. Example:

void myMethod(arg1, arg2, …
 …argn…,
 …argnn);

If possible, statements should be aligned with parentheses aligned like this:

if (
 cond1 &&
 cond2 &&…
 …condn
)
{
 // etc.
}

White Space
White space is encouraged to improve readability. In particular, leave a space after the comma in

multi-argument method calls and also in between numerical operators. Example:

// Arithmetic
mySize = N_lim * M_lim;

// Arguments
myMethod(a, b, c);

Control Flow Compact Form
The compact form of single line body control flow statements (without the braces) can be used if it

improves readability and obeys the line length guidance but should be on separate lines to facilitate

debugging. Example

// First branch
if (short condition)
 doSomething();

// Second branch
else
 doSomethingElse();

Ternary syntax may also be used e.g.

Variable = (condition) ? value1 : value2;

Initialiser Lists
Initialiser lists should be used wherever possible to simplify constructors. For readability, the

preceding colon should be placed on the next line. Example:

MyClass::MyClass()
 : superMethod(), member1(arg1)
{
 // etc.
}

File Structure
LUMA is modularised. It is split into a number of class-based units that contain capability. The

lattices and all their data is maintain in a hierarchy of GridObj classes. Three singletons act as

managers MpiManager, GridManager and ObjectManager. Utilities are provided by the static

GridUtils class which should not be instantiated. If new functionality cannot be rationalised as an

extension of these existing units then a new class should be designed and created. The emphasis

here is on design. When implementing a new class, time must be spent understanding the

behaviour, interoperability and reusability of the class and its functionality.

The class is declared in a *.h header file and, unless it is templated, implemented in one or more

*.cpp files. These files must be named using the convention given in Naming Conventions.

Getters / Setters
The use of getters and setters for private information should be avoided as it increases code

complexity. Consider making a class a friend class if private access is needed or consider redesigning

the class.

Documentation
LUMA uses doxygen for documentation. All classes must be documented at declaration in the *.h

header file. Member variables must be documented in the header file. However, member methods

must only be documented in the *.cpp file. A simple comment can be used in the header file without

the doxygen syntax. The method documentation block must use tab alignment for clarity, e.g.

// **
/// \brief Constructor for a sub-grid.
///
/// This is not called directly but by the addSubGrid() method which
/// first performs a check to see if a sub-grid is required.
///
/// \param RegionNumber ID indicating the region of nested refinement to which
/// this sub-grid belongs.
/// \param pGrid pointer to parent grid.

The copyright / IP protection header should be included in every source file (*.h or *.cpp).

Naming Conventions
Common conventions for naming are as follows:

• Classes (including structures) must start with an upper-case letter.

• Member methods must use camel-case with a lower-case initial letter.

• Member variables must use camel-case with an upper-case initial letter

• Macros are all caps and spaced by underscores.

• Template arguments should start with an upper-case letter.

When creating new cpp files, each file must be used to group implementation of methods with a

common theme. For example, I/O methods can be grouped into their own file so those methods are

easier to find in the source code. This common theme must be appended to the class name as part

of the file name. e.g. for the GridObj class, I/O methods are grouped in the file GridObj_ops_io.cpp.

Furthermore, the method should prefix the common theme e.g.

GridObj::io_readFromFile();

Structures
Structures should be used to pack and pass data to keep the number of arguments in external

methods to a minimum. This is particularly relevant for I/O operations. A structure should be used

where the proposed class would contain just data and no behaviour (i.e. no methods except the

constructor/destructor). If the data is only to be used within a given class, the structure should be

nested inside the class rather than declared as a separate h + cpp file combination.

Public, Protected, Private
All data in a class should initially be set to private access and only made protected/public as

required. The use of getters and setters are discouraged as is unnecessary use of the friend keyword

which should ideally be restricted for manager singletons only which are over-arching. Public data

should be grouped at the top of a class declaration, followed by protected followed by private for

visibility.

Deprecation
LUMA operates a deprecation model. Methods or variables that are no-longer required are first

marked as deprecated using the macro, for example

DEPRECATED void bc_applyBounceBack(int label, int i, int j, int k);

The marked item will remain deprecated for one minor point release before being removed on the

next point release. Do not simply delete components of classes without using the deprecation model

to avoid breaking other parts of the code.

Hard-coding
Data should never be hard-coded. Any hard-coded information should be specified as a macro

through the definitions file. The specification of initial values for member variables is acceptable but

must be documented.

Header Guards
Header guards must always be used, even if

#pragma once

Is specified. This is for consistency. For example,

#ifndef GRIDOBJ_H
#define GRIDOBJ_H

 // etc…

#endif

Spacers
Methods within a file should be separated by an 80-character spacer

// **

Defined Blocks
Pre-processor block defines, if nested should use a series of comments at the end of the definition to

identify matching pairs. E.g.

#ifdef L_BUILD_FOR_MPI

 // etc

#ifdef L_HDF_DEBUG

 // etc

#endif // L_HDF_DEBUG

#endif // L_BUILD_FOR_MPI

