
Neo6502 Assembly - Messaging API

Paul Robson
Bill Auger

2024-03-09

Contents

1 Neo6502 Messaging API 2

2 API Functions 5

3 Console Codes 23

4 Graphics 24

5 Tile Maps 27

6 Sprites 28

7 Sound 30

1

1 Neo6502 Messaging API

The Neo6502 API is a messaging system. There are no methods to access the hardware directly.
Messages are passed via the block of memory from $FF00 to $FF0F, as specified in the ”API
Messaging Addresses” table on the following page.

The kernel include file documents/release/neo6502.inc specifies the beginning of this address
range as the identifier ControlPort, along with the addresses of WaitMessage and SendMessage

(described later), various related kernel jump vectors, and some helper functions.

The application include files examples/assembly/neo6502.asm.inc and examples/C/neo6502.h

also specify the beginning of this address range as the identifier ControlPort. The assembly
include also specifies ControlPort and the other controls as API COMMAND, API FUNCTION, API ERROR,
API STATUS, and API PARAMETERS. The C header also specifies ControlPort and the other controls as
API COMMAND ADDR, API FUNCTION ADDR, API ERROR ADDR, API STATUS ADDR, and API PARAMETERS ADDR.

API Commands/Functions are grouped by functionality. For example, Group 1 are system-
related, and Group 2 are console-I/O-related. All Groups and their Commands/Functions are
shown in the following table.

Command/Function Parameters are notated in this document as Params[0] through Params[7],
or as a list or range (eg: Params[1,2], Params[0..7]). Note that these are referring to a map-
ping to memory locations. The numbers represent offsets from the Parameters base address
$FF04. Ie: the actual bytes are not necessarily all distinct ”parameters” in the conventional sense.
Depending on the routine, a logical parameter may be an individual byte, one or more bits of a
byte interpreted as a composite or bit-field, or multiple adjacent bytes interpreted as 16 or 32 bit
values. For example, the list Params[0,1] would indicate a single logical parameter, comprised
of the two adjacent bytes $FF04 and $FF05. The range Params[4..7] would indicate a single
logical parameter, spanning consecutive bytes between $FF08 and $FF0B.

Note that strings referenced by Parameters are not ASCIIZ, but are length-prefixed.
The first byte represents the length of the string (not counting itself). The string begins at the
second byte. Consequently, strings must be 256 bytes or less (not counting the length header).

2

API Messaging Addresses
Meta Address Contents

Group $FF00

Group selector and status. Writing a non-zero value to
this location triggers the routine specified in $FF01. The
system will respond by setting the ’Error’, ’Information’,
and ’Parameters’ values appropriately. Upon completion,
this memory location will be will cleared.

Function $FF01

A command or function within the selected Group. For
example, Group 1 Function 0 writes a value to the console;
and Group 1 Function 1 reads the keyboard.

Error $FF02 Return any error values, 0 = no error.

Information $FF03

bit-7
Set (1) if the ESCape key has been pressed. This is not
automatically reset.

bit-6 unused
bit-5 unused
bit-4 unused
bit-3 unused
bit-2 unused
bit-1 unused
bit-0 unused

Parameters $FF04..B

This memory block is notated in this document as
Params[0] through Params[7], or as a composite list or
range (eg: Params[1,2], Params[0..7]). Some Func-
tions require Parameters in these locations and some re-
turn values in these locations; yet others do neither.

Reserved $FF0C..F Reserved.

3

1.1 API Interfacing Protocol

Neo6502 application programmers should interact with the API per the following algorithm:

1. Wait for any pending command to complete. There is a subroutine WaitMessage which does
this for the developer.

2. Setup the Function code at $FF01; and any Parameters across $FF04..$FF0B. To print a
character for example, set $FF01 to $06 and set $FF04 to the character’s ASCII value. To
draw a line, set $FF01 to $02 and set $FF04..$FF0B as four 16-bit pixel coordinates:

Params
P0 P1 P2 P3 P4 P5 P6 P7

$FF04 $FF05 $FF06 $FF07 $FF08 $FF09 $FF0A $FF0B
srcX lo srcX hi srcY lo srcY hi destX lo destX hi destY lo destY hi

3. Setup the command code at $FF00. This triggers the routine; so mind that the Function
code and Parameters are setup sanely prior. On a technical point, both implementations
process the message immediately on write.

4. Optionally, wait for completion. Most commands (eg: writing to the console) do not require
waiting, as any subsequent command will wait/queue as per step 1. Query commands (e.g.
reading from the keyboard queue), return a value in a parameter. Programs must wait until
the control address $FF00 has been cleared before reading the result of a query.

There is a support function SendMessage, which in-lines the command and function. E.g.: this
code from the Kernel:

jsr KSendMessage ; send message for command 2,1 (read keyboard)

.byte 2,1

jsr KWaitMessage ; wait to receive the result message

lda DParameters ; read result

The instructions above are equivalent to the following explicit steps:

lda #1

sta DFunction

lda #2

sta DCommand ; trigger API function 2,1 (read keyboard)

Loop:

lda DCommand ; load the result - non-zero until the routine’s completion

bne Loop ; wait for API routine to complete

lda DParameters ; read result (a key-code)

4

2 API Functions

The following tables are a comprehensive list of all supported API functions.

For the convenience of application programmers, the application include files examples/C/neo6502.h
and examples/assembly/neo6502.asm.inc define macros for these groups, their functions, and com-
mon parameters (colors, musical notes, etc).

Group 1 - System Functions

Function Assembly Description
0

Reset
LDA #$00

STA #$FF01

Resets the messaging system and component systems. Normally,
should not be used.

1
Timer

LDA #$01

STA #$FF01

Deposit the value (32-bits) of the 100Hz system timer into
Params[0..3].

2
Key Status

LDA #$02

STA #$FF01

Deposit the state of the specified keyboard key into Params[0]. The
key which to query is specified in Params[0].

3
Basic

LDA #$03

STA #$FF01

Loads and allows the execution of BASIC via a indirect jump through
address zero.

4
Credits

LDA #$04

STA #$FF01

Print the Neo6502 project contributors (stored in flash memory).

5
Serial Status

LDA #$05

STA #$FF01

Check the serial port to see if there is a data transmission.

6
Locale

LDA #$06

STA #$FF01

Set the locale code specified in Params[0,1] as upper-case ASCII
letters. Params[0] takes the first letter and Params[1] takes the
second letter. For example:

English: Params[0]<-$45 (’E’) and Params[1]<-$4E (’N’)

French: Params[0]<-$46 (’F’) and Params[1]<-$52 (’R’)

7
System Reset

LDA #$07

STA #$FF01

System Reset. This is a full hardware reset. It resets the RP2040 using
the Watchdog timer, and this also resets the 65C02.

5

Group 2 - Console Functions

Function Assembly Description
0

Write Character
LDA #$00

STA #$FF01

Function 0 is console out (duplicate of Function 6 for backward com-
patibility).

1
Read Character

LDA #$01

STA #$FF01

Read and remove a key press from the keyboard queue into Params[0].
This is the ASCII value of the keystroke. If there are no key presses in
the queue, Params[0] will be zero.

Note that this Function is best for text input, but not for games.
Function 7,1 is more optimal for games, as this only detects key presses,
you cannot check whether the key is currently down or not.

2
Console Status

LDA #$02

STA #$FF01

Check to see if the keyboard queue is empty. If it is, Params[0] will
be $FF, otherwise it will be $00.

3
Read Line

LDA #$03

STA #$FF01

Input the current line below the cursor into Params[0,1] as a length-
prefixed string; and move the cursor to the line below. Handles
multiple-line input.

4
Define Hotkey

LDA #$04

STA #$FF01

Define the function key F1..F10 ($01..$0A) specified in Params[0]

to emit the length-prefixed string stored at the memory lo-
cation specified in Params[2,3]. For example, in a block
of in-line assembly within a BASIC program, the string:
06,12,108,105,115,116,13 would clear the screen (12), then list the
program (108=’l’,105=’i’,115=’s’,116=’t’,13=’ENTER’).
F11 and F12 cannot currently be defined.

5
Define Character

LDA #$05

STA #$FF01

Define a font character specified in Params[0] within the range of
192..255. Fill bits 0..5 (columns) of Params[1..7] (rows) with the
character bitmap.

6
Write Character

LDA #$06

STA #$FF01

Write the character specified in Params[0] to the console at the cursor
position. Refer to Section #3 ”Console Codes” for details.

7
Set Cursor Pos

LDA #$07

STA #$FF01

Move the cursor to the screen character cell Params[0]<-X,
Params[1]<-Y.

8
List Hotkeys

LDA #$08

STA #$FF01

Display the current function key definitions.

9
Screen Size

LDA #$09

STA #$FF01

Fetches the console size, in characters, to Params[0] and Params[1],
the height and width respectively.

10
Insert Line

LDA #$010

STA #$FF01

Insert Line This is a support function which inserts a blank line in the
console and should not be used.

11
Delete Line

LDA #$011

STA #$FF01

Delete Line This is a support function which deletes a line in the console
and should not be used.

12
Clear Screen

LDA #$012

STA #$FF01

Clears the screen.

6

Group 2 - Console Functions (continued)

Function Assembly Description
13

Cursor Position
LDA #$013

STA #$FF01

Get Cursor Position
Returns the current cursor position in Params[0] and Params[1]

14
Clear Region

LDA #$014

STA #$FF01

Erase all characters within the rectangular region specified in
Params[0,1] (begin X,Y) and Params[2,3] (end X,Y).

15
Set Text Color

LDA #$015

STA #$FF01

Set Text Color
Sets the foreground colour to Params[0] and the background colour
to Params[1]

16
Cursor Inverse

LDA #$016

STA #$FF01

Toggles the cursor colour between normal and inverse (ie: swaps FG
and BG colors). This should not be used.

17
Tab() implementation

LDA #$017

STA #$FF01

Internal helper.

7

Group 3 - File I/O Functions

Function Assembly Description
1

List Directory
LDA #$01

STA #$FF01

Display the file listing of the present directory.

2
Load File

LDA #$02

STA #$FF01

Load a file by name into memory. On input:

� Params[0,1] points to the length-prefixed filename string;

� Params[2,3] contains the location to write the data to. If the
address is $FFFF, the file will instead be loaded into the graphics
working memory, used for sprites, tiles, images.

On output:

� Params[0] contains an error/status code.

3
Store File

LDA #$03

STA #$FF01

Saves data in memory to a file. On input:

� Params[0,1] points to the length-prefixed filename string;

� Params[2,3] contains the location to read data from;

� Params[4,5] specified the number of bytes to styore.

On output:

� Params[0] contains an error/status code.

8

Group 3 - File I/O Functions (continued)

Function Assembly Description
4

File Open
LDA #$04

STA #$FF01

Opens a file into a specific channel. On input:

� Params[0] contains the file channel to open;

� Params[1,2] contains the length-prefixed filename;

� Params[3] contains the open mode. See below.

Valid open modes are:

� 0 opens the file for read-only access;

� 1 opens the file for write-only access;

� 2 opens the file for read-write access;

� 3 creates the file if it doesn’t already exist, truncates it if it does,
and opens the file for read-write access.

Modes 0 to 2 will fail if the file does not already exist. If the channel is
already open, the call fails. Opening the same file more than once on
different channels has undefined behaviour and is not recommended.

5
File Close

LDA #$05

STA #$FF01

Closes a particular channel. On input:

� Params[0] contains the file channel to close.

6
File Seek

LDA #$06

STA #$FF01

Seeks the file opened on a particular channel to a location. On input:

� Params[0] contains the file channel to operate on;

� Params[1,2,3,4] contains the file location.

You can seek beyond the end of a file to extend the file. Whether the
file size changes when the seek happens or when you perform the write
is undefined.

7
File Tell

LDA #$07

STA #$FF01

Returns the current seek location for the file opened on a particular
channel. On input:

� Params[0] contains the file channel to operate on.

On output:

� Params[1,2,3,4] contains the file location.

9

Group 3 - File I/O Functions (continued)

Function Assembly Description
8

File Read
LDA #$08

STA #$FF01

Reads data from an opened file. On input:

� Params[0] contains the file channel to operate on;

� Params[1,2] points to the destination in memory, or $FFFF to
write to graphics memory;

� Params[3,4] contains the amount of data to read.

On output:

� Params[3,4] is updated to contain the amount of data actually
read.

Data is read from the current seek position, which is advanced after
the read.

9
File Write

LDA #$09

STA #$FF01

Writes data to an opened file. On input:

� Params[0] contains the file channel to operate on;

� Params[1,2] points to the data in memory;

� Params[3,4] contains the amount of data to write.

On output:

� Params[3,4] is updated to contain the amount of data actually
written.

Data is written to the current seek position, which is advanced after
the write.

10
File Size

LDA #$010

STA #$FF01

Returns the current size of an opened file. On input:

� Params[0] contains the file channel to operate on.

On output:

� Params[1,2,3,4] contains the size of the file.

This call should be used on open files and takes into account any
buffered data which has not yet been written to disk. As a result it
may return a different size to the stat API call described below.

10

Group 3 - File I/O Functions (continued)

Function Assembly Description
11

File Set Size
LDA #$011

STA #$FF01

Extends or truncates an opened file to a particular size. On input:

� Params[0] contains the file channel to operate on;

� Params[1,2,3,4] contains the new size of the file.

12
File Rename

LDA #$012

STA #$FF01

Renames a file. On input:

� Params[0,1] points to the length-prefixed string for the old
name;

� Params[2,3] points to the length-prefixed string for the new
name.

Files may be renamed across directories.
13

Delete File
LDA #$013

STA #$FF01

Deletes a file or directory. On input:

� Params[0,1] points to the length-prefixed filename string.

Deleting a file which is open has undefined behaviour. Directories may
only be deleted if they are empty.

14
Create Directory

LDA #$014

STA #$FF01

Creates a new directory. On input:

� Params[0,1] points to the length-prefixed filename string.

15
Change Directory

LDA #$015

STA #$FF01

Changes the current working directory. On input:

� Params[0,1] points to the length-prefixed path string.

11

Group 3 - File I/O Functions (continued)

Function Assembly Description
16

Stat File
LDA #$016

STA #$FF01

Retrieves information about a file by name. On input:

� Params[0,1] points to the length-prefixed filename string.

On output:

� Params[0,1,2,3] contains the length of the file;

� Params[4] contains the attribute bitfield of the file.

If the file is open for writing, this may not return the correct size due
to buffered data not having been flushed to disk. File attributes are a
bitfield as follows:

File attributes
bit-7 bit-6 bit-5 bit-4 bit-3 bit-2 bit-1 bit-0
0 0 0 Hidden Read only Archive System Directory

17
Open Directory

LDA #$017

STA #$FF01

Opens a directory for enumeration. On input:

� Params[0,1] points to the length-prefixed filename string.

Only one directory at a time may be opened. If a directory is already
open when this call is made, it is automatically closed; however, an
open directory may make it impossible to delete the directory, so closing
the directory after use is good practice.

18
Read Directory

LDA #$018

STA #$FF01

Reads an item from the currently open directory. On input:

� Params[0,1] points to a length-prefixed buffer for returning the
filename.

� Params[0,1] is unchanged, but the buffer is updated to contain
the length-prefixed filename (without any leading path);

� Params[2,3,4,5] contains the length of the file;

� Params[6] contains the file attributes, as described by the Stat
File call.

This call fails if there are no more items to read.
19

Close Directory
LDA #$019

STA #$FF01

Closes any directory opened by Open Directory.

12

Group 3 - File I/O Functions (continued)

Function Assembly Description
20

Copy File
LDA #$020

STA #$FF01

Copies a file. On input:

� Params[0,1] points to the length-prefixed old filename;

� Params[2,3] points to the length-prefixed new filename.

Only single files may be copied, not directories.
21

Set file attributes
LDA #$021

STA #$FF01

Sets the attributes for a file. On input:

� Params[0,1] points to the length-prefixed filename;

� Params[2] is the attribute bitfield. (See Stat File for details.)

The directory bit cannot be changed. Obviously.
32

List Filtered
LDA #$032

STA #$FF01

Prints a filtered file listing of the current directory to the console. On
input:

� Params[0,1] points to the filename search string.

Files will only be shown if the name contains the search string (via a
substring match).

13

Group 4 - Mathematics Functions

Function Assembly Description
0

Addition
LDA #$00

STA #$FF01

Addition
Register1 := Register 1 + Register2

1
Subtraction

LDA #$01

STA #$FF01

Subtraction
Register1 := Register 1 - Register2

2
Multiplication

LDA #$02

STA #$FF01

Multiplication
Register1 := Register 1 * Register2

3
Decimal Division

LDA #$03

STA #$FF01

Decimal Division
Register1 := Register 1 / Register2 (floating point)

4
Integer Division

LDA #$04

STA #$FF01

Integer Division
Register1 := Register 1 / Register2 (integer result)

5
Integer Modulus

LDA #$05

STA #$FF01

Integer Modulus
Register1 := Register 1 mod Register2

6
Compare

LDA #$06

STA #$FF01

Compare Numbers
Params[0] := Register 1 compare Register2 : returns $FF, 0, 1 for
less equal and greater
Note: float comparison is approximate because of rounding.

16
Negate

LDA #$016

STA #$FF01

Negate
Register1 := -Register 1

17
Floor

LDA #$017

STA #$FF01

Floor
Register1 := floor(Register 1)

18
Square Root

LDA #$018

STA #$FF01

Square Root
Register1 := square root(Register 1)

19
Sine

LDA #$019

STA #$FF01

Sine
Register1 := sine(Register 1) angles in degrees

20
Cosine

LDA #$020

STA #$FF01

Cosine
Register1 := cosine(Register 1) angles in degrees

21
Tangent

LDA #$021

STA #$FF01

Tangent
Register1 := tangent(Register 1) angles in degrees

22
Arctangent

LDA #$022

STA #$FF01

Arctangent
Register1 := arctangent(Register 1) angles in degrees

23
Exponent

LDA #$023

STA #$FF01

Exponent
Register1 := e to the power of Register 1

24
Logarithm

LDA #$024

STA #$FF01

Logarithm
Register1 := log(Register 1) natural logarithm

25
Absolute Value

LDA #$025

STA #$FF01

Absolute Value
Register1 := absolute value(Register 1)

26
Sign

LDA #$026

STA #$FF01

Sign
Register1 := sign(Register 1), returns -1 0 or 1

14

Group 4 - Mathematics Functions (continued)

Function Assembly Description
27

Random Decimal
LDA #$027

STA #$FF01

Random Decimal
Register1 := random float from 0-1

28
Random Integer

LDA #$028

STA #$FF01

Random Integer
Register1 := random integer from 0 to (Register 1-1)

32
Number to Decimal

LDA #$032

STA #$FF01

Number to Decimal
Helper function for tokeniser, do not use.

33
String to Number

LDA #$033

STA #$FF01

String to Number
Convert the length prefixed string at Params[4,5] to a constant in
Register1.

34
Number to String

LDA #$034

STA #$FF01

Number to String
TODO: Convert the constant in Register1 to a length prefixed string
which is stored at Params[4,5]

15

Group 5 - Graphics Functions

Function Assembly Description
1

Set Defaults
LDA #$01

STA #$FF01

Configure the global graphics system settings. Not all parameters are
relevant for all graphics commands; but all parameters will be set by
this command. So mind their values. Refer to Section #4.1 ”Graphics
Settings” for details.

Graphics Settings
P0 P1 P2 P3 P4 P5 P6 P7

$FF04 $FF05 $FF06 $FF07 $FF08 $FF09 $FF0A $FF0B
AND XOR Fill Extent Flip unused unused unused

$FF08 - Flip Axis Flags
bit-7 bit-6 bit-5 bit-4 bit-3 bit-2 bit-1 bit-0
0 0 0 0 0 0 Vertical Horizontal

2
Draw Line

LDA #$02

STA #$FF01

Draw a line between the screen coordinates speci-
fied in Params[0,1],Params[2,3] (begin X,Y) and
Params[4,5],Params[6,7] (end X,Y).

Draw Line Parameters
P0 P1 P2 P3 P4 P5 P6 P7

$FF04 $FF05 $FF06 $FF07 $FF08 $FF09 $FF0A $FF0B
X lo X hi Y lo Y hi X’ lo X’ hi Y’ lo Y’ hi

3
Draw Rectangle

LDA #$03

STA #$FF01

Draw a rectangle spanning the screen coordinates spec-
ified in Params[0,1],Params[2,3] (corner X,Y) and
Params[4,5],Params[6,7] (opposite corner X,Y).

4
Draw Ellipse

LDA #$04

STA #$FF01

Draw an ellipse spanning the screen coordinates spec-
ified in Params[0,1],Params[2,3] (corner X,Y) and
Params[4,5],Params[6,7] (opposite corner X,Y).

5
Draw Pixel

LDA #$05

STA #$FF01

Draw a single pixel at the screen coordinates specified in
Params[0,1],Params[2,3] (X,Y).

6
Draw Text

LDA #$06

STA #$FF01

Draw the length-prefixed string of text stored at the memory loca-
tion specified in Params[4,5] at the screen character cell specified in
Params[0,1],Params[2,3] (X,Y).

7
Draw Image

LDA #$07

STA #$FF01

Draw the image with image ID in Params[4] at the screen coordi-
nates Params[0,1],Params[2,3] (X,Y). The extent and flip settings
influence this command.

8
Draw Tilemap

LDA #$08

STA #$FF01

Draw the current tilemap at the screen coordinates spec-
ified in Params[0,1],Params[2,3] (top-left X,Y) and
Params[4,5],Params[6,7] (bottom-right X,Y) using current
graphics settings.

16

Group 5 - Graphics Functions (continued)

Function Assembly Description
32

Set Palette
LDA #$032

STA #$FF01

Set the palette colour at the index spcified in Params[0] to the values
in Params[1],Params[2],Params[3] (RGB).

33
Read Pixel

LDA #$033

STA #$FF01

Read a single pixel at the screen coordinates specified in
Params[0,1],Params[2,3] (X,Y). When the routine completes, the
result will be in Params[0]. If sprites are in use, this will be the
background only (0..15), if sprites are not in use it may return (0..255)

34
Reset Palette

LDA #$034

STA #$FF01

Reset the palette to the defaults.

35
Set Tilemap

LDA #$035

STA #$FF01

Set the current tilemap. Params[0,1] is the memory address of the
tilemap, and Params[2,3],Params[4,5] (X,Y) specifies the offset
into the tilemap, in units of pixels, of the top-left pixel of the tile.

36
Read Sprite Pixel

LDA #$036

STA #$FF01

Read Pixel from the sprite layer at the screen coordinates specified in
Params[0,1],Params[2,3] (X,Y). When the routine completes, the
result will be in Params[0]. Refer to Section #?? ”Pixel Colors” for
details.

37
Frame Count

LDA #$037

STA #$FF01

Deposit into Params[0..3], the number of v-blanks (full screen re-
draws) which have occurred since power-on. This is updated at the
start of each v-blank period.

64
Set Color

LDA #$064

STA #$FF01

Set Color
Sets the current drawing colour to Params[0]

65
Set Solid Flag

LDA #$065

STA #$FF01

Set Solid Flag
Sets the solid flag to Params[0], which indicates either solid fill (for
shapes) or solid background (for images and fonts)

66
Set Draw Size

LDA #$066

STA #$FF01

Set Draw Size
Sets the drawing scale for images and fonts to Params[0]

67
Set Flip Bits

LDA #$067

STA #$FF01

Set Flip Bits
Sets the flip bits for drawing images. Bit 0 set causes a horizontal flip,
bit 1 set causes a vertical flip.

17

Group 6 - Sprites Functions

Function Assembly Description
1

Sprite Reset
LDA #$01

STA #$FF01

Reset the sprite system.

2
Sprite Set

LDA #$02

STA #$FF01

Set or update the sprite specified in Params[0].

Sprite Parameters
P0 P1 P2 P3 P4 P5 P6 P7

$FF04 $FF05 $FF06 $FF07 $FF08 $FF09 $FF0A $FF0B
Sprite X lo X hi Y lo Y hi Image Flip Anchor

$FF09 - Image Parameters
bit-7 bit-6 bit-5 bit-4 bit-3 bit-2 bit-1 bit-0
0 32-bit Index

$FF0A - Flip Axis Flags
bit-7 bit-6 bit-5 bit-4 bit-3 bit-2 bit-1 bit-0
0 0 0 0 0 0 Vertical Horizontal

values that are $80 or $8080 are not updated.
3

Sprite Hide
LDA #$03

STA #$FF01

Hide the sprite specified in Params[0].

4
Sprite Collision

LDA #$04

STA #$FF01

Params[0] is non-zero if the distance is less than or equal to
Params[2] between the center of the sprite with index specified
in Params[0] and the center of the sprite with index specified in
Params[1] .

5
Sprite Position

LDA #$05

STA #$FF01

Deposit into Params[1..4], the screen coordinates of the sprite with
the index specified in Params[0].

18

Group 7 - Controller Functions

Function Assembly Description
1

Read Controller
LDA #$01

STA #$FF01

This reads the status of the default controller into Params[0]

Initially, the Controller is the keyboard. This Function interprets key
presses and releases as a joystick. The system maintains a bit-array of
which keys are pressed. Currently, the keyboard is the only available
Controller.

This function will become obsolete shortly as a more extensive API
using USB controllers becomes available. However, it will maintain
backward compatibility.

$FF04 - Controller Flags
bit-7 bit-6 bit-5 bit-4 bit-3 bit-2 bit-1 bit-0
0 0 B A Down Up Right Left

19

Group 8 - Sound Functions

Function Assembly Description
1

Reset Sound
LDA #$01

STA #$FF01

Reset the sound system. This empties all channel queues and silences
all channels immediately.

2
Reset Channel

LDA #$02

STA #$FF01

Reset the sound channel specified in Params[0].

3
Beep

LDA #$03

STA #$FF01

Play the startup beep immediately.

4
Queue Sound

LDA #$04

STA #$FF01

Queue a sound. Refer to Section #7 ”Sound” for details.

Queue Sound Parameters
P0 P1 P2 P3 P4 P5 P6 P7

$FF04 $FF05 $FF06 $FF07 $FF08 $FF09 $FF0A $FF0B
Chan Frq hi Frq lo Dur lo Dur hi Sld lo Sld hi Source

5
Play Sound

LDA #$05

STA #$FF01

Play the sound effect specified in Params[1] on the channel specified
in Params[0] immediately, clearing the channel queue.

6
Sound Status

LDA #$06

STA #$FF01

Deposit in Params[0] the number of notes outstanding before silence
in the queue of the channel specified in Params[0], including the
current playing sound, if any.

20

Group 9 - Turtle Graphics Functions

Function Assembly Description
1

Turtle Initialise
LDA #$01

STA #$FF01

Initialise the turtle graphics system. Params[0] is the sprite number
to use for the turtle, as the turtle graphics system “adopts” one of the
sprites. The icon is not currently re-definable, and initially the turtle
is hidden.

2
Turtle Turn

LDA #$02

STA #$FF01

Turn the turtle right by Params[0]Params[1] degrees. Show if hid-
den. To turn left, turn by a negative amount.

3
Turtle Move

LDA #$03

STA #$FF01

Move the turtle forward by Params[0]Params[1] degrees, drawing in
colour Params[2], pen down flag in Params[3]. Show if hidden.

4
Turtle Hide

LDA #$04

STA #$FF01

Hide the turtle.

5
Turtle Home

LDA #$05

STA #$FF01

Move the turtle to the home position (in the center, pointing upward).

21

Group 10 - UExt I/O Functions

Function Assembly Description
1

UExt Initialise
LDA #$01

STA #$FF01

Initialise the UExt I/O system. This resets the IO system to its default
state, where all UEXT pins are I/O pins, inputs and enabled.

2
Write GPIO

LDA #$02

STA #$FF01

(P0,P1)
This copies the value Params[1] to the output latch for UEXT pin
Params[0]. This will only display on the output pin if it is enabled,
and its direction is set to output.

3
Read GPIO

LDA #$03

STA #$FF01

P0 = GPIO(P0)
If the pin is set to input, reads the level on pin on UEXT port
Params[0]. If it is set to output this reads the output latch for pin on
UEXT port Params[0]

4
Set Port Direction

LDA #$04

STA #$FF01

P0 to P1
Set the port direction for UEXT Port Params[0] to Params[1]. This
can be 1 (Input) 2 (Output) or 3 (Analogue)

5
Write I2C

LDA #$05

STA #$FF01

(P0,P1,P2)
Write to I2C Device Params[0], Register Params[1] value
Params[2]. Does not fail if device not present.

6
Read I2C

LDA #$06

STA #$FF01

P0 = (P0,P1)
Read from I2C Device Params[0], Register Params[1]. If the device
is not present this will cause an error.

7
Read Analog

LDA #$07

STA #$FF01

P1P0 = GPIOAnalogue(P0)
Read the analogue value on UEXT Pin Params[0] ; this has to be
set to analogue type to work. Returns a value from 0..4095 stored in
Params[0,1], which represents an input value of 0 to 3.3 volts.

8
Check if can read register

LDA #$08

STA #$FF01

P0 = Scan(P0)
Try to read from I2C Device Params[0]. If present then Params[0]

will contain a non-zero value.
9

Read I2C Block into memory
LDA #$09

STA #$FF01

Read I2C Block(P0,P2P1,P4P3)
Try to read a block of memory from I2C Device Params[0] into mem-
ory at Params[1,2] length Params[3,4]

10
Write I2C Block from memory

LDA #$010

STA #$FF01

Write I2C Block(P0,P2P1,P4P3)
Try to write a block of memory to I2C Device Params[0] from memory
at Params[1,2] length Params[3,4]

11
Read SPI Block into memory

LDA #$011

STA #$FF01

Read SPI Block(P2P1,P4P3)
Try to read a block of memory from SPI Device into memory at
Params[1,2] length Params[3,4]

12
Write SPI Block from memory

LDA #$012

STA #$FF01

Write SPI Block(P2P1,P4P3)
Try to write a block of memory to SPI Device from memory at
Params[1,2] length Params[3,4]

22

3 Console Codes

The following are console key codes. They can be printed in BASIC programs using chr$(n), and
are also related to the character keys returned by inkey$(). The key() function uses physical
key numbers. Some control codes do not have corresponding keyboard keys; and some console
outputs are not yet implemented.

Backspace (8), Tab (9), Enter/CR (13), Escape (27), and the printable characters (32..127) are
the standard ASCII set. Other typical control keys (eg: Home and arrows) are mapped into the
0..31 range.

Console Key Codes - Non-Printable
ASCII CTRL+Key Key Output

1 A Left Arrow Cursor Left
4 D Right Arrow Cursor Right
5 E Insert Insertion Mode
6 F Page Down Cursor Page Down
7 G End Cursor Line End
8 H Backspace Delete Character Left
9 I Tab Tab Character
10 J Line Feed
12 L Clear Screen
13 M Enter Carriage Return (Accept Line)
18 R Page Up Cursor Page Up
19 S Down Cursor Down
20 T Home Cursor Line Begin
22 V Cursor Down (8 Lines)
23 W Up Cursor Up
24 X Cursor Color Inverse
26 Z Delete Delete Character Right
27 [Escape Exit

Console Key Codes - Printable
Hex Key Output
20-7F ASCII Set Standard ASCII Characters
80-8F Set Foreground Color
90-9F Set Background Color
C0-FF User-definable Characters

23

4 Graphics

4.1 Graphics Settings

Function 5,1 configures the global graphics system settings. Not all Parameters are relevant for
all graphics commands; but all Parameters will be set by this command. So mind their values.

The actual color of each drawn pixel will be computed at runtime by AND’ing the existing
pixel color with the value specified in Params[0], then XOR’ing the result with the value specified
in Params[1].

The value in Params[2] is a flag which determines the paint fill mode for the Draw Rectangle
and Draw Ellipse commands: reset (0) for outline, set (1) for solid fill.

The value in Params[3] is the draw extent (window) for the Draw Image command.

The value in Params[4] is a bit-field of flags for the Draw Image command, which determine
if the image will be inverted (flipped) horizontally or vertically: bit-0 for horizontal, bit-1 for
vertical, reset (0) for normal, set (1) for inverted.

For the ”Draw Rectangle” and ”Draw Ellipse” commands, the given order and position of the
coordinates are not significant. To be precise, one is ”a corner” and the other is ”the opposite
corner”. For the ”Draw Ellipse” command, these corners are referring to the bounding-box. The
coordinates for an ellipse will lie outside of the ellipse itself.

24

4.2 Graphics Data

Graphics data files are conventionally named ending in the .gfx suffix; though this is not manda-
tory. The format is quite simple.

Graphics Data Format
Offset Data Description

0 1 Graphics Data Format ID
1 Count Number of 16x16 tiles in use
2 Count Number of 16x16 sprites in use
3 Count Number of 32x32 sprites in use

4..255 Reserved
256 Raw Sprites graphics data

The layout of sprites graphics data is all of the 16x16 tiles, followed by all the 16x16 sprites,
followed by all the 32x32 sprites, all in their respective orders. As there is currently only about
20kB of Graphics Memory, these should be used somewhat sparingly.

Each byte specifies 2 pixels. The upper 4 bits represent the first pixel colour; and the lower
4 bits represent the second pixel colour. So tiles and 16x16 sprites occupy 16x16/2 bytes (128
bytes) each. Each 32x32 sprite occupies 32x32/2 bytes (512 bytes). Colour 0 is transparent for
sprites (colour 9 should be used for a black pixel).

The release package includes Python scripts for creating graphics files, which allow you to
design graphics using your preferred editing tools (eg: Gimp, Inkscape, Krita, etc). There is an
example in the crossdev/ directory, which demonstrates how to get started importing graphics
into the Neo6502.

25

4.3 Pixel Colors

Pixel Colors
Byte Color
$80 Black/Transparent
$81 Red
$82 Green
$83 Yellow
$84 Blue
$85 Magenta
$86 Cyan
$87 White
$88 Black
$89 Dark Grey
$8A Dark Green
$8B Orange
$8C Dark Orange
$8D Brown
$8E Pink
$8F Light Grey

26

5 Tile Maps

A tile map occupies an area of user memory in 65C02. It is comprised of three meta-data bytes,
followed by one byte for each tile, which is it’s tile number in the graphic file (refer to the following
section).

F0-FF are special reserved tile numbers, F0 is a transparent tile; and F1-FF are a solid tile in
the current palette colour. The format is very simple.

Tile Maps Format
Offset Data Description

0 1 Graphics Data Format ID
1 Width Width of tile-map (number of tiles)
2 Height Height of tile-map (number of tiles)
3.. Raw Tiles graphics data (width * height bytes)

27

6 Sprites

The Neo6502 graphics system has one sprite layer (z-plane) in the conventional sense. Techni-
cally, there is no ”sprite layer”, per-se. The system uses palette manipulation to create, what is
in practice, a pair of 4-bit bit-planes. The sprite graphics are in the upper nibble, the background
is in the lower nibble, and the background is drawn only if the sprite graphic layer is zero. It’s
this top nibble which is read by Function 5,36 ”Read Sprite Pixel”.

Function 6,2 sets or updates a sprite. These parameters (eg: the X and Y coordinates) cannot
be set independently. To retain/reuse the current value of a parameter for a subsequent call, set
each of the associated byte(s) to $80 (eg: $80,$80,$80,$80 for coordinates).

The ’Sprite’ Parameter Params[0] specifies the index of the sprite in the graphics system.
Sprite 0 is the turtle sprite.

Params[1,2],Params[3,4] specifies the X and Y screen coordinates.

Bits 0-5 of the ’Image’ Parameter Params[5] specify the index of a specific graphic within
the sprites data. Bit 6 of the ’Image’ Parameter specifies the sprite dimensions: reset (0) for
16x16, set (1) for 32x32. In practice, the index is the same as the sprite number ($80-$BF for
16x16 sprites, $C0-$FF for 32x32 sprites), but without bit-7 set.

The value in Params[6] specifies a bit-field of flags, which determines if the graphic will be
inverted (flipped) horizontally or vertically: bit-0 for horizontal, bit-1 for vertical, reset (0) for
normal, set (1) for inverted.

Params[7] specifies the anchor alignment. Refer to Section #6.1 ”Sprite Anchors” for details.

28

6.1 Sprite Anchors

The table below shows the valid anchor alignments for a sprite. The anchor position is the origin
of the relative coordinate given. That is, coordinates 0,0 of the sprite will coincide with one of
the positions shown in the table below. The default anchor alignment is zero (middle-center).

Sprite Anchors
7 8 9

4 0/5 6

1 2 3

To the right are two examples. Assume this is a 32x32
sprite. In the upper example, the anchor point is at 8,
the top-center. Considering the origin at the bottom-left, this
sprite is drawn at 16,32, the midpoint of the top of the
square.

In the lower example, the anchor point is at 0; and this sprite is
drawn at 16,16 (the middle of the square). The anchor point should
be something like the centre point. So for a walking character, this
might be anchor point 2 (the bottom-center).

29

7 Sound

Function 8,4 queues a sound. Queued sounds are played sequentially, each after the previous has
completed, such that sounds within a channel queue will not conflict, interrupt, or overlap.

Frequency is in units of Hertz. Duration is in units of 100ths of a second. Slide is a gradual
linear change in frequency, in units of Hz per 100th of a second. Sound target type 0 is the
beeper. Currently, the beeper is the only available sound target.

Queue Sound Parameters
P0 P1 P2 P3 P4 P5 P6 P7

$FF04 $FF05 $FF06 $FF07 $FF08 $FF09 $FF0A $FF0B
Channel Freq hi Freq lo Duration lo Duration hi Slide lo Slide hi Target

Function 8,5 plays a sound effect immediately. These will be synthesised to the best ability
of the available hardware. These are predefined as :

Number Effect
0 positive
1 negative
2 error
3 confirm
4 reject
5 sweep
6 coin
7 las70
8 powerup
9 victory
10 defeat
11 fanfare
12 alarm 1
13 alarm 2
14 alarm 3
15 ringtone 1
16 ringtone 2
17 ringtone 3
18 danger
19 expl100
20 expl50
21 expl20
22 las30
23 las10

30

	Neo6502 Messaging API
	API Functions
	Console Codes
	Graphics
	Tile Maps
	Sprites
	Sound

