
14: AMAL
If you wish to generate the smooth movement required in an arcade game, it's necessary
to move each object on the screen dozens of times a second. This is a real struggle even
in machine code and it's way beyond the abilities of the fastest version of Basic.

AMOS sidesteps this problem by incorporating a powerful animation language which
is executed independently of your Basic programs. This is capable of generating high
speed animation effects which would be impossible in standard Basic.

The AMOS Animation Language (AMAL) is unique to AMOS Basic. It can be used to
animate anything from a sprite to an entire screen at incredible speed. Up to 16 AMAL
programs can be executed simultaneously using interrupts.

Each program controls the movements of a single object on the screen. Objects may
be moved in complex predefined attack patterns, created from a separate editor accessory.
You can also control your objects directly from the mouse or joystick if required.

The sheer versatility of the AMAL system has to be seen to be believed. Load up 1
from the MANUAL folder for a complete demonstration.

AMAL principles
AMAL is effectively just a simple version of Basic which has been carefully optimised for
the maximum possible speed. As with Basic, there are instructions for program control
(Jump), making decisions (If) and repeating sections of code in loops (For ... Next). The real
punch comes when an AMAL program is run. Not only are the commands lightning fast but
all AMAL programs are compiled before run-time.

AMAL commands are entered using short keywords consisting of one or more capital
letters. Anything in lowercase is ignored completely. This allows you to pad out your AMAL
instructions into something more readable. So the M command might be entered as Move
or the L instruction as Let.

AMAL instructions can be separated by practically any unused characters including
spaces. You can't however, use the colon ":" for this purpose, as it's needed to define a
label. We advise you use a semi-colon ";" to separate commands to avoid possible AMAL
headaches.

'There are two ways of creating your AMAL programs. The first is to produce your
animation sequences with the AMAL accessory program and save them into a memory
banK or you can define your animations inside AMOS Basic using the AMAL command. The
general format of this instruction is:

AMAL n,a$

n is the identification number of your new AMAL program. As a default all programs are
assigned to the relevant hardware sprite. So the first AMAL program controls sprite number
one, the second sprite number two, and so on. You can change this selection at any time
using a separate CHANNEL command. a$ is a string containing a list of AMAL instructions
to be performed in your program. Here's a simple example:

Load "AMOS_DATA:Sprites/MonkeLright.abk": Rem Load some example sprites
Get Sprite Palette
Sprite 8,130,50,1 : Rem Place a sprite on the screen

176

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

AmaI8,"S: M 300,200,100; M -300,-200,100 J 5": Rem Define a small AMAL program
Amal On 8 : Rem Activate AMAL program number eight
Direct

The program returns you straight back to direct mode with the DIRECT command. Try
typing a few Basic commands at this point. You can see the movement pattern continues
regardless, without interfering with the rest of the AMOS system. Also note we have used
sprite 8 to force the use of a computed sprite. All computed sprites from 8 to 15 are
automatically assigned to the equivalent channel number by the AMAL system. So there's
no need for any special initialisation procedures. Unless you wish to restrict the amount of
hardware sprites it's safest to stick to just computed sprites in your programs. Notice how
we've activated the AMAL program using the AMAL ON command. This has the format:

AMAL ON [prog]

prog is the number of a single AMAL program you wish to start. If it's omitted then all your
AMAL programs will be executed at once.

AMAL tutorial
We'll now provide you with a guided tour of the AMAL system. This will allow you to slowly
familiarise yourself with the mechanics of AMAL programs, without having to worry about
too many technical details.

For the time being we'll be concentrating on sprite movements, but the same
principles can also be applied to bob or screen animations.

Start off by loading some example sprites into memory. These can be found in the
Sprites folder on the AMOS data disc. To get a directory of Sprite files type the following
from the direct window:

Dir "AMOS_DATA:"

To load a sprite file, type a line like:

Load" AMOS _ DATA:Sprites/octopus.abk"

Moving an object
As you would expect from a dedicated animation language, AMAL allows you to move your
objects in a variety of different ways. The simplest of these involves the use of the Move
command.

Move (Move an object)

M w,h,n

The M command moves an object w units to the right and h units down in exactly n
movement steps. If the coordinates of your object were (X,Y), then the object would
progressively move to X+W,Y+H.

Supposing you have a sprite at coordinates 100,100. The instruction M 100,100,100

177

would move it to 200,200. The speed of this motion depends on the number of movement
steps. If n is large, then each individual sprite movement will be small and the sprite will
move very slowly. Conversely, a small value for n results in large movement steps which
jerk the sprite across the screen at high speed. Here are some examples of the move
command:

Rem This moves an octopus sprite down the screen using AMAL
Load "AMOS_DATA:Sprites/octopus.abk": Get Sprite Palette
sprite 8,300,0,1
Amal 8,"M 0,250,50' : Amal On 8 : Wait Key

Rem This version moves an octopus sprite across the screen
Load "AMOS_DATA:Sprites/octopus.abk": Get Sprite Palette
Sprite 9,150,150,1
AmaI9,"M 300,0,50" : Amal On 9 : Wait Key

Rem Moves octopus down and across the screen
Load "AMOS_DATA:Sprites/octopus.abk": Get Sprite Palette
Sprite 1 0,150,150,1
AmaI10,"M 300,·100,50" : Amal On 10: Wait Key

Rem Demonstrates multiple Move commands
Load" AMOS _ DATA:Sprites/octopus.abk" : Get Sprite Palette
M$="Move 300,0,50 ; Move ·300,0,50"
Sprite 11,150,150,1
AmaI11,A$: Amal On 11 : Wait Key

Notice how we've expanded M to Move in the above program. Since the letters "ove" are
in lower case, they will be ignored by the AMAL system.

At first glance, Move is a powerful but unexciting little instruction. It's ideal for moving
objects such as missiles, but otherwise it's pretty uninspiring.

Actually nothing could be further from the truth. That's because the parameters in the
Move instruction are not limited to simple numbers. You can also use complex arithmetical
expressions incorporating one of a variety of useful AMAL functions. Example:

Load" AMOS _ DATA:Sprites\octopus.abk" : Get Sprite Palette: Sprite 12,150,150,1
AmaI12,"Move XM-X,YM·Y,32"
Amal On 12: Wait Key

This smoothly moves computed sprite 12 to the current mouse position. X and Y hold the
coordinates of your sprite, and XM and YM are functions returning the current coordinates
of the mouse.

It's possible to exploit this effect in games like Pac-Man to make your objects chase
the player's character. A demonstration of this procedure can be found in 2.

The Move command can also be used to animate a whole screen. Here's a simple
example:

Load Iff "AMOS _ DATA: IFF/Frog_ Screen.lFF", 1

178

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

Channell To Screen Display 1 : Rem Assigns AMAL program 1 to screen 1
Amall,"Move 0,-200,50; Move 0,200,50'
Amal On 1 : Direct

CHANNEL assigns an AMOS program to a particular object. We'll be discussing this
command in detail slightly later, but the basic format is:

CHANNEL P To object n

P is the number of your AMAL program. Allowable values range from 0 to 63, although only
the first 16 of these programs can be performed using interrupts.

object specifies the type of object you wish to control with your AMAL program. This
is indicated using one of the following statements:

Sprite
Bob
Screen Display
Screen Offset
Screen Size
Rainbow

(Values greater than seven refer to computed sprites)
(Blitter object)
(Used to move the screen display)
(Hardware scrolling)
(Changes the screen size using interrupts)
(Animates a rainbow effect)

n is the number of the object to be animated. This object needs to be subsequently defined
using the SPRITE, BOB or SCREEN OPEN instructions. Examples:

Channel 2 To Bob 1 : Rem Animate Bob 1 using AMAL program number 2
Channel 3 To Sprite 8 : Rem Assign channel three to a computed sprite
Channel 4 To Screen Display 0 : Rem Move default screen via AMAL
ChannelS To Screen Offset 0 : Rem Change the screen offset within AMAL

Animation

Anim (Animate an object)

A n,(image,delay)(image,delay) ...

The Anim instruction cycles an object through a sequence of images, producing a smooth
animation effect. n is the number of times the animation cycle is to be repeated. A value
of zero for this parameter will perform the animation continuously.

image specifies the number of an image to be used for each frame of your animation.
delay determines the length of time this image is to be displayed on the screen, measured
in units of a 50th of a second. Examples:

Load "AMOS_DATA:Sprites/octopus.abk": Get Sprite Palette
Sprite 8,260,100,1
Amal8, "A 0,(1,2)(2,2)(3,2)(4,2)"
Amal On 8 : Direct

Load "AMOS_DATA:Sprites/MonkeLright.abk": Get Sprite Palette

179

Sprite 9,150,50,11
M$="Anim 12, (1,4)(2,4)(3,4)(4,4)(5,4)(6,4) ;"
M$=M$+"Move 300,150,150; Move -300,-150,75'
AmaI9,M$
AmalOn9
Direct

The second example combines a sprite movement with an animation. Notice how we've
separated the commands with a semi-colon ";". This ensures that the two operations are
totally independent of each other. Once the animation sequence has been defined, AMAL
will immediately jump to the next instruction, and the animation will begin.

It's important to realize that Anim only works in conjunction with sprites and bobs. So
it's not possible to animate entire screens with this command.

Simple Loops

J u m P (Redirects an AMAL program)

J label

Jump provides a simple way of moving from one part of an AMAL program to another. label
is the target of your jump, and must have been defined elsewhere in your current program.

All AMAL labels are defined using a single uppercase letter followed by a colon. Like
instructions, you can pad them out with lower case letters to improve readability. Here are
some examples:

S:
Swoop:
Label:

Remember that each label is defined using just a single letter. So S and Swoop actually
refer to the same label! If you attempt to define two labels starting with an identical letter,
you'll be presented with a label already defined in animation string error.

Each AMAL program can have its own unique set of labels. Its perfectly acceptable
to use the identical labels in several different programs. Example:

Load "AMOS _ DATA:Sprites/octopus.abk"
Get Sprite Palette
Rem Set up seven computed sprites down the screen
For S=8 To 20 Step 2

Sprite S,200,(S-7)*13+40,1
NextS
Rem Create seven AMAL programs
ForS=1 To 7

Channel S To Sprite 6+(S*2)
M$="Anim 0,(1,2)(2,2)(3,2)(4,2) ; Label: Move "+Str$(S*2)+",0,7 ; "
M$=M$+"Move -"+Str$((&-2)*2)+",0,7; Jump Label"

180

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

AmaIS,M$
NextS
Rem Okay, now animate it all!
Amal On : Direct

This next example repeatedly moves a sprite to the current mouse position:

Load "AMOS _ DATA:Sprite/octopus.abk"
Get Sprite Palette
Sprite 8,150,150,1
AmaI8,"R: Move XM-X,YM-Y,8 ; Pause; Jump R"
Amal On 8

Since AMAL commands are performed using interrupts, infinite loops could be disastrous.
So a special counter is automatically kept of the number of jumps in your program. When
the counter exceeds ten, any further jumps will be totally ignored by the AMAL system.

Note: if you rely on this system, and allow your programs to loop continually, you'll
waste a great deal of the Amiga's computer power. In practice, it's much more efficient to
limit yourself to just a single jump per VBL. This can be achieved by adding a simple
PAUSE command before each Jump in your program. See PAUSE for more details.

Variables and expressions

Let (Assigns a value to a register)

L register=expression

The L instruction assigns a value to an AMAL register. The action is very similar to normal
Basic, except that all expressions are evaluated strictly from left to right.

Registers are integer variables used to hold the intermediate values in your AMAL
programs. Allowable numbers range between -32768 to +32767. There are three basic
types of register:

Internal registers
Every AMAL program has its own set of 10 internal registers. The names of these registers
start with the letter R, followed by one of the digits from 0 to 9 (RO-R9).

Internal registers are like the local variables defined inside an AMOS Basic procedure.

External Registers
External registers are rather different because they retain their values between separate
AMAL programs. This allows you to use these registers to pass information between
several AMAL routines. AMAL provides you with up to 26 external registers, with names
ranging from RA to RZ.

The contents of any internal or external register can be accessed directly from your
Basic program using the AMREG function (explained later).

181

II
Special Registers
Special registers are a set of three values which determine the status of your object. II

X, Y contain the coordinates of your object. By changing these registers you can move
your object around on the screen. Example:

Load "AMOS_DATA:Sprites/Frog_Sprites.abk": Channel 1 To Bob 1 II
Flash Off : Get Sprite palette : Bob 1,0,0,1
AmaI1,"Loop: LetX=Xt1 ; Let Y=Yt1; Pause; Jump Loop"
Amal On 1 : Direct

A stores the number of the image which is displayed by a sprite or bob. You can alter this II
value to generate your own animation sequences like so:

Load "AMOS_DATA:Sprites/Frog_Sprites.abk": Get Sprite Palette: Flash Off II
Channel2to Bob 1: Bob 1,300,100,1
M$="Loop: Let A=At 1 ; "
M$=M$t"For RO=1 To 5 ; Next RO ; Jump Loop"
AmaI2,M$
Amal On 2 : Direct II

The For To Next loop will be explained in more detail below. It is used here to slow down
each change to Bob 1 's image. When the Nextof the loop is executed, AMAL won't continue
until a vertical blank has occurred. Also note the use of";" to separate the AMAL instructions II
- although a space will serve just as well.

Operators II
AMAL expressions can include all the normal arithmetic operations, except MOD. You can
also use the following logical operations in your calculations:

&
I

logical AND
logical OR

Note that it's not possible to change the order of evaluation using brackets "0" as this would

II
slow down your calculations considerably and thus reduce the allowable time in the II
interrupt. Now for some more examples for you to type in:

Load "AMOS_DATA:Sprites/octopus.abk": Hide
Get Sprite Palette II
Sprite B,X MOUSE,Y MOUSE,1
AmaIB,"Loop: Let X=XM ; Let Y=YM ; Pause; Jump Loop"
AmalOnB

Load "AMOS_DATA:Sprites/octopus.abk": Hide II
Get Sprite Palette
Sprite B,X MOUSE,Y MOUSE,1
AmaIB,"Anim 0,(1,4)(2,4)(3,4)(4,4) ; Loop: Let X=XM ; Let Y=YM ; Pause; Jump Loop" II
AmalOn

182 II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

The above examples effectively mimic the CHANGE MOUSE command. However this
system is much more powerful as you can easily move bobs, computed sprites, or even
screens using exactly the same technique.

Making Decisions

If (Branch within an AMAL string)

If test Jump L

This instruction allows you to perform simple tests in your AMAL programs. If the
expression test is -1 (true) the program will jump to label L, otherwise AMAL will
immediately progress to the next instruction. Note that unlike it's basic equivalent, you're
limited to a single jump operation after the test.

It's common practice to pad out this instruction with lowercase commands like "then"
or "else". This makes the action of the command rather more obvious. Here's an example:

If X>100 then Jump Label else Let X=X+ 1

test can be any logical expression you like, and may include:

<>
<
>

Example:

Not equals
Less than
Greater than
Equals

Load" AMOS _ DATA:Sprites/octopus.abk"
Get Sprite Palette
Sprite 8,130,50,1
C$="Main: If XM>100 Jump Test:"
C$=C$+" Let X=XM"
C$=C$+" Test: If YM>100 Jump Main"
C$=C$+" Let Y=YM Jump Main"
Amal 8,C$: Amal On : Direct

A larger example can be found in 4 which allows you to control the position of a sprite using
the joystick. This is actually quite crude and could be speeded up dramatically with the help
of the AUTOTEST command. See AUTOTEST.

Warning! Don't try to combine several tests into a single AMAL expression using "&" or "I".
Since expressions are evaluated from left to right, this will generate an error. Take the
expression: X>100IY>100. This is intended to check whether X>100 OR Y>100. In
practice, the expression will be evaluated in the following order:

X>100
IY

May be TRUE or FALSE
OR result with Y

183

> 100 Check if (Y> 1 OOIY» 1 00)

The result from the above expression will obviously bear no relation to the expected value.
Technically-minded users can avoid this problem by using boolean algebra. First assign
each test to an single AMAL register like so:

Let RO=X>100; Let Rl=Y>100

Now combine these tests into a single expression using "I" and "&" and use it directly in your
If statement.

If RO I R1 then Jump L ...

This may look a little crazy, but it works beautifully in practice.

For To Next (Loop within AMAL)

For reg=start To end

Next reg

This implements a standard FOR ... NEXT loop which is almost identical to its Basic
equivalent. These loops can be exploited in your programs to move objects in complex
visual patterns. reg may be any normal AMAL register (RO-R9 or RA-RZ). However you
can't use special registers for this purpose.

As with Basic, the register after the Next must match with the counter you specified
in the For, otherwise you'll get an AMAL syntax error. Also note that the step size is always
set to one. Additionally, it's possible to "nest" any number of loops inside each other.

Note that each animation channel will only perform a single loop per VBL. This
synchronizes the effects of your loops with the screen display, and avoids the need to add
an explicit Pause command before each Next.

Generating an attack wave for a game
These loops can be used to create some quite complex movement patterns. The easiest
type of motion is in a straight line. This can be generated using a single For. .. Next loop like
so:

Load "AMOS_DATA:Sprites/octopus.abk": Get Sprite Palette
Sprite 8,130,60,1
C$="For RO=1 To 320 ; Let X=X+ 1 ; Next RO" : Rem Move Sprite from left to right
Amal 8,C$: Amal On 8 : Direct

You can now expand this program to sweep the object back and forth across the screen.

Load "AMOS_DATA:Sprites/octopus.abk": Get Sprite Palette
Sprite 8,130,60,1
C$="Loop: For RO=1 to 320 ; Let X=X+ 1 ; Next RO ; " : Rem Move sprite forward

184

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

C$=C$t"For RO=1 To 320; Let X=X-1 ; Next RO; Jump Loop": Rem Move Sprite back
Amal 8,C$: Amal On 8 : Direct

The first loop moves the object from left to right, and the second from right to left.
So far the pattern has been restricted to just horizontal movements. In order to create

a realistic attack wave, it's necessary to incorporate a vertical component to this motion as
well. This can be achieved by enclosing your program with yet another loop.

Load" AMOS _ DATA:Sprites/octopus.abk"
Get Sprite Palette
Sprite 8,130,60,1
C$="For R1=0 To 10;"
C$=C$+ "For RO=1 To 320 ; Let X=X+ 1 ; Next RO ;" : Rem Move forward
C$=C$+"Let Y=Y+8 ; " : Rem Move Sprite down screen
C$=C$+"For RO=1 To 320 ; Let X=X-1 ; Next RO ;" Rem Move back
C$=C$+"Let Y=Y+8; Next R1":Rem Move Sprite down
Amal 8,C$:Amal On 8

The above program generates a smooth but quite basic attack pattern. A further
demonstration can be found in Example 14.1 in the MANUAL folder.

Recording a complex movement sequence

PLay
PLay path

If you've looked at the smooth attack waves in a modern arcade game, and thought them
forever beyond your reach, think again. The AMAL Play command allows you freely
animate your objects through practically any sequence of movements you can imagine. It
works by playing a previously defined movement pattern stored in the AMAL memory bank.

These patterns are created from the AMAL accessory on the AMOS program disc.
This simply records a sequence of mouse movements and enters them directly into the
AMAL memory bank. Once you've defined your patterns in this way, you can effortlessly
assign them to any object on the screen, reproducing your original patterns perfectly. Both
the speed and the direction of your movement can be changed at any time from your AMOS
Basic program.

The first time AMAL encounters a play command, it checks the AMAL bank to find the
recorded movement you specified using the patiJ parameter. patiJ is simply a number
ranging from one to the maximum number of patterns in the bank. If a problem crops up
during this phase, AMAL will abort the play instruction completely, and will skip to the next
instruction in your animation string.

After the pattern has been initialised, register RO will be loaded with the tempo of the
movement. This determines the time interval between each individual movement step. All
timings are measured in units of a 50th of a second. By changing this register within your
AMAL program, you can speed up or slow down your object movements accordingly.

Note that each movement step is added to the current coordinates of your object. So
if an object is subsequently moved using the Sprite or Bob instructions, it will continue it's

185

manoeuvres unaffected, starting from the new screen position. It's therefore possible to
animate dozens of different objects on the screen using a single sequence of movements.

Register R 1 now contains the a flag which sets the direction of your movements. There
are three possible situations:

• Rl >0 Forward

A value of one for Rl specifies that the movement pattern will be replayed from start to
finish, in exactly the order it was created. (Default)

• Rl =0 Backward

Many animation sequences require your objects to move back and forth across the screen

II

II

II

II
in a complex pattern. To change direction, simply load Rl with a zero. Your object will now II
turn around and execute your original movement steps in reverse.

• Rl =-1 Exit

If a collision has been detected from your AMOS program, you'll need to stop your object II
completely, and generate an explosion effect. This can be accomplished by setting Rl to
a value of minus one. AMAL will now abort the play instruction, and immediately jump to
the next instruction in your animation sequence. II

The clever thing about these registers is that they can be changed directly from AMOS
Basic. This lets you control your movement patterns directly from within your main
program. There's even a special AMPLAY instruction to make things easier for you.

The PLay command is perfect for controlling the aliens in an arcade game. In fact, II
it's the single most powerful instruction in AMAL.

AMAL (Ca/lan AMAL program)

AMAL n,a$
AMAL n,p
AMAL n,a$ to address

The AMAL command assigns an AMAL program to an animation channel. This program
can be taken either from a string in a$ or directly from the AMAL bank.

The first version of the instruction loads your program from the string a$ and assigns
it to channel n. a$can contain any list of AMAL instructions. Alternatively you can load your
program from a memory bank created using the AMAL accessory. p now refers to the
number of an AMAL program stored in bank number 4.

n is the number of an animation channel ranging from 0 to 63. Each AMOS channel
can be independently assigned to either a bob, a sprite or a screen.

Only the first 16 AMAL programs can be performed using interrupts. In orderto exceed
this limit you need execute your programs directly from Basic using the SYNCHRO
command.

The final version of the AMAL instruction is provided for advanced users. Instead of
moving an actual object, this simply copies the contents of registers X,Y and A into a
specific area of memory. You can now use this information directly in your own Basic

186

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

routines. It's therefore possible to exploit the AMAL system to animate anything from a
BLOCK to a character. The format is:

AMAL n, a$ To address

address must be EVEN and must point to a safe region of memory, preferably in an AMOS
string or a memory bank. Every time your AMAL program is executed (50 times per
second), the following values will be written into this memory area:

Location

Address

Address+2
Address+4
Address+6

Bit 0 is set to 1 If the X has changed.
Bit 1 indicates that Y has been altered.
Bit 2 will be set if the image (A) has changed since the last interrupt.
Is a word containing the latest value of X
Holds the current value of Y
Stores the value of A.

These values can be accessed from your program using a simple DEEK.
Note: This option totally overrides any previous CHANNEL assignments.

AMAL Commands
Here is a full list of the available AMAL commands:

Move

This moves an object smoothly from one position to another. The syntax is:

Move deltaX, deltaY, steps

deltaXholds the distance to be moved horizontally. Positive numbers indicate a movement
from left to right, and negative values from right to left.

delta Y specifies the vertical displacement. If delta Y is positive then your object will
move down the screen, otherwise it will drift upwards.

n indicates the number of steps the movement is to be performed in. The smoothest
movements are generated when both deltaX and delta Yare exact multiples of n.

A (Anim)

Anim cycles,(image,delay)(image,delay) ...

The Anim instruction assigns a sequence of images to either a sprite or a blitter object to
generate a realistic animation effect.

cycles specify the number of times the animation is to be repeated. If it's set to zero,
the animation will continue indefinitely. image chooses the image number for each frame
of your animation. delay sets the amount of time (in 50ths of a second) the image will be
displayed.

After the Anim command has been initialised, AMAL will automatically jump to the next

187

instruction. This allows you to combine both animation and movement in the same AMAL
program.

Let

Let reg=exp

This command assigns a value to an AMAL register. reg is the name of the AMAL register
to be changed. There are 10 internal registers ranging from RO to R9 available for your use,
and a further 26 external registers (RA to RZ). You can also alter the position and type of
your object directly using the special registers X,Y and A.

expris a standard arithmetical expression and is evaluated from left to rightto produce
the final result.

Most of the normal operators are supported including +,-, * and t. However you are not
allowed to change the order of calculation using brackets "0".

Jump

Jump L

The Jump command jumps from the current point in your AMAL program to label L. L is the
name of a label which has been previously defined in your AMAL string. Labels consist of
single capital letter and are created using a ":" as in standard Basic.

If

If exp Jump L

The If instruction allows you to jump from one part of an AMAL program to another
depending on the result of a test. exp is a logical expression in the standard format

If exp is TRUE then the program will jump to label L, otherwise it will immediately
execute the next instruction after the Jump.

There are two other forms of this command which are used by the AUTOTEST feature:

If exp Direct L (Chooses part of program to be executed after an autotest)
If exp eXit (Leaves Autotest)

See AUTO TEST for more information.

For To Next

II

II

II

II

II

II

II

II

II

II

II
For Reg=start To end ... Next Reg II
This is a direct implementation of Basic's FOR. .. NEXT loops. Reg can be any internal or
external AMAL register. As normal, loops can be nested but the step size of your loop is
always set to one. II

Note that AMAL will automatically wait for the next vertical blank before jumping back
to the start of your loop with Next. Since the object movements in your program will only

188 II

II

II

II

II

II

II

II

II

II

II

II

be seen after the screen is updated after the VBL, faster loops would simply waste valuable
processor time with no visible effect. So your For ... Next loops are automatically synchronized
with the screen updates to produce the smoothest possible results.

PLay

PLay path

The PL command animates your objects through a series of movements stored in the
AMAL bank. These patterns are entered directly with the mouse, using the powerful AMAL
accessory utility. So there's no real limit to the type of patterns you can produce with this
system.

path is the number of a pattern which has been previously saved in the AMAL bank.
If this pattern does not exist, AMAL will skip the PL instruction, and immediately jump to
the next comrnand in your animation sequence.

All movernents are performed relative to the current position of your objects. It's
therefore possible to move an entire attack wave using a single path definition. You can
also move an object directly from Basic without affecting the movement in the slightest. The
status of the current movement is controlled through two AMAL registers.

RO holds the tempo of your movement. Increasing this value will speed up the object on
the screen.

R1 contains the direction of the motion. There are three possible alternatives.

R1 >0 Moves through the movement sequence in the original order.

R1 =0 Executes your movement steps in reverse.

Rh-1 Stops the movement sequence completely and proceeds to the next AMAL
instruction.

The contents of these registers can be changed at any time from within your Basic program
using either the AMREG or the special AMPLAY command.

A further explanation of this instruction can be found in the AMAL tutorial near the
beginning of this chapter. Also see Example 14.2 in the MANUAL folder.

Warning: It is essential that you use semi-colons to split up your AMAL instructions.
The following string will generate an AMAL bank not reserved error simply because there
is no separator.

A$="Pause Lei RO=l"

II The correct syntax is:

A$="Pause ; Lei RO=1"

II End

II 189

II
End

Terminates the entire AMAL program and turns off the Autotest feature if it's been defined. II
Pause

Pause II
Pause temporarily halts the execution of your AMAL program and waits for the next vertical
blank period. After the VBL your program will be automatically resumed starting from the II
next instruction.

Pause is often used before a Jump command to ensure that the number of jumps is
less than the maximum of 10 per VBL. This frees valuable processor time for your Basic
programs, and can have a dramatic effect on their overall speed. So try to get into the habit II
of preceding your Jump commands with a Pause instruction as it's much more efficient.

AUtotest

AU (List of tests)

The Autotestfeature of AMAL has been designed to provide fast interaction between AMAL
and the user. It adds a special test at the start of the AMAL program which is performed
every VBL before the rest of the AMAL program is executed. See the Autotest system for
more details.

eXit

eXit

Exits from an Autotest and re-enters the current AMAL program.

Wait

Wait

Wait freezes your AMAL program and only executes the Autotest.

On

On

ON activates the main program after a wait command.

Direct

Direct

Sets the section of the main program to be executed after an autotest.

190

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

AMAL functions
=XM (Returns the X coordinate of the mouse)

This function is exactly the same as the X MOUSE function in AMOS Basic. It returns the
X coordinate of mouse cursor in hardware coordinates.

=YM (Returns the Y coordinate of the mouse)

YM returns the Y coordinate of the mouse pointer as a hardware coordinate.

=K1 (Status of left mouse key)

K1 returns a value of -1 (true) if the left mouse key has been pressed, otherwise 0 (false).

=K2 (Status of right mouse key)

Returns the state of the right mouse button. If the button has been pressed then K2 will
return -1 (true).

=JO (Tests right joystick)

The JO function tests the right joystick and returns a bit-map containing the current status.
See JOY for more details.

=J1 (Test left joystick)

This tests the left joystick and returns a bit-pattern in standard format.

=Z(n) (Random number)

The Zfunction returns a random number from -32767 to 32768. This number can be limited
to a specific range using the bit-mask n.

A logical AND operation is performed between the bit mask n and the random number
to generate the final result. So setting n to a value of 255 will ensure that the numbers will
be returned in the range 0 to 255.

Since this function has been optimized for speed, the number returned isn't totally
random. If you need really random numbers, you would be better to generate your values
using Basic's RND and then load them into an external AMAL register with the AMREG
function.

=XH (Convert a screen x coordinate into a hardware coordinate)

=XH(s,x)

This converts a screen x coordinate into its equivalent hardware coordinate relative to
screen s.

191

=YH (Converts a screen Y coordinate into hardware format)

=YH(s,y)

YH transforms a y coordinate from screen format into hardware format relative to screen
s.

=XS (Hardware to screen conversion)

=XS(s,x)

Changes hardware coordinate x into a graphic coordinate relative to screen s.

=YS (Hardware to screen conversion)

=YS(s,y)

Transform hardware ycoordinate into its equivalent screen coordinate.

=BC (Check for collisions between bobs)

=Bob Col(n,s,e)

BC is identical to the equivalent AMOS Basic BOB COL instruction. It checks bob number
n for collisions between bobs s to e.

If a collision has been detected, then BC will return a value of -1 (true), otherwise 0
(false). This instruction may not be performed within an interrupt. So it's only available
when you are executing you AMAL routines directly from Basic with the SYNCHRO
instruction.

=SC(m,s,e) (Sprite Collisions)

=Sprite Col(n,s,e)

This is equivalent to the SPRITE COL function in AMOS Basic. It checks sprite n for
collisions between sprites sto e. If the test is successful, a value of -1 (true) will be returned.
Like the previous BC function it is only allowed in conjunction with the SYNCHRO
instruction.

=C(n) (Col)

Returns the status of object n after an SC or BC function. If the object has collided then this
function will return a value of -1 (true), otherwise 0 (false).

=V(v) (Vumeter)

II

II

II

II

II

II

II

II

II

II

II

II
The VU function samples one of the sound channels and returns the intensity of the current II

192 II

II

II

II

II

II

II

voice. This is a number in the range 0-255. You can use this information to animate your
objects in time to the music. An example of this can be found in Example 14.3. Also see
the VUMETER function from AMOS Basic.

Controlling AMAL from Basic
AMAL ON/OFF (Start/stop an AMAL program)

AMALON [n)

Once you've defined your AMAL program you need to execute it using the AMAL ON
command. This activates the AMAL system and starts your programs from the first
instruction.

AMAL ON activates all your programs. The optional parameter n allows you to start
just one routine at a time.

AMAL OFF [n)

Stops one or all AMAL programs from executing. These programs are erased from
memory. They can only be restarted by redefining them again using the AMAL instruction.

II AMAL FREEZE (Temporarily freeze an AMAL program)

II

II

II

II

II

II

II

AMAL Freeze [n)

Stops one or more AMAL programs from running. Your programs can be restarted at any
time using a simple call to AMAL ON. Note that this instruction should always be used to
stop AMAL before a command such as DIR is executed, otherwise problems with timing
can cause visual mishaps.

=AMREG= (Get the value of an external AMAL register)

r=AMREG(n, [channel))
AMREG(n, [channel))=expression

The AMREG function allows you to access the contents of internal and external AMAL
register directly from within your Basic program.

n is the number of the register. Possible values range from 0 to 25 with zero
representing register RA and twenty-five denoting RZ.

By using the optional channel parameter you can reference any AMAL internal
register. In this mode n ranges between 0 and 9 representing RO to R9.

The following example shows how it is possible to retrieve a sprite's current X position
from Basic:

Load "AMOS_DATA:Sprites/octopus.abk": Get Sprite Palette
Channel 1 To Sprite 8: Sprite 8,100,100,1
A$="Loop: Let RX=Xt 1; Let X=RX; Pause; Jump Loop" : Rem X will overflow when >640

193

Amall,A$: Amal On : Curs Off
Do

Locate 0,0
Z=Ascf'X")-65 : Rem Note the use of ASC to get the register number
Print Amreg(AscC'X'1-65)

Loop

AMPLA V (Control an animation produced with PLay)

AMPLAY tempo,direction[start TO end)]

Any movement sequences you've produced using the AMAL PL command are controlled
through the internal registers RD and RI. Each object will be assigned it's own unique set
of AMAL registers. So if you're animating several objects, you'll often need to load a number
of these registers with exactly the same values.

Although this can be achieved using the standard AMREG function, itwould obviously
be much easier if there was a single instruction which allowed you to change RD and RI
for a whole batch of objects at a time. That's the purpose of the AMPLAY command.

AM PLAY takes the tempo and direction of your movements, and loads them into the
registers RD and R1 in the selected channels.

tempo controls the speed of your object. on the screen. It sets a delay (in 5Dths of a
second) between each successive movement step.

direction changes the direction of the motion Here's a list of the various different
options.

D

-1

Direction of motion

Move the selected object in the original movement direction.

Reverses the motion and moves the object

backwards.

Aborts movement pattern and jumps to the following instruction in your
AMAL animation sequence.

As a default, this instruction will affect all current animation channels. This can be changed
by adding some explicit start and endpoints to the command. start is the channel number
of the first object to be adjusted. end holds the channel number assigned to the last object
in your list.

Note that either the tempo or the direction can be omitted as required. Examples:

Amplay ,0 : Rem Reverse your objects
Amplay 2, : Rem Slow down your movement patterns
Amplay 3,1 : Rem Set temp to three and direction to 1
Amplay,-1 3 To 6: Rem Stop movements on channels 3,4,5 and 6

194

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

=CHANAN (Test Amal animation)

s=CHANAN(channel)

This is a simple function which checks the status of an AMAL animation sequence and
returns -1 (true) if it is currently active or 0 (false) if the animation is complete. channel holds
the number of the channel to be tested. Here's an example:

Load "AMOS_DATA:Sprites/Monkey-righl.abk": Get Sprite Palette
Sprite 9,150,150,11
M$=" Anim 12,(11,4)(12,4)(13,4)(14,4)(15,4)(16,4);"
Amal 9,M$: Amal On
While Chanan(9)
Wend
Print "Animation complete"

=CHANMV (Checks whether an object is still moving)

s=CHANMV(channel)

Returns a value of -1 (true) if the object assigned to channel is currently moving, otherwise
o (false).
This command can be used in conjunction with the AMAL Move instruction to check
whether a movement sequence has "run out" of steps. You can now restart the sequence
at the new position with an appropriate movement string if required. Example:

Load "AMOS_DATA:Sprites/Monkey-righl.abk": Get Sprite palette
Sprite 9,150,50,11
M$="Move 300,150,150; Move -300,-150,75"
Amal 9,M$: Amal On
While Chanmv(9)
Wend
Print "Movement complete"

AMAL errors
=AMALERR (Return the position of an error)

p=AMALERR

AMALERR returns the position in the current animation string where an error has occurred.
Careful inspection of this string will allow you to quickly correct your mistakes. Example:

Load "AMOS _ DATA:Sprites/Octopus.abk"
Sprite 8,100,100,1
A$="L: IF X=300 then Jump Leise X=Xt 1; Jump L"
AmaI8,A$

195

II
This program will generate a syntax error because IF will be interpreted as the two
instructions "I" and "F". To find the position in the animation string of this error, type the II
following instruction from the direct window.

Print Mid$(A$,Amalerr,Amaller+5)

Error messages
If you make a mistake in one of your AMAL programs, AMOS will exit back to Basic with
an appropriate error message. Here's a full list of the errors which can be generated by this
system, along with an explanation of their most likely causes.

Bank not reserved: This error is caused if you attempt to call the PLay instruction without
first loading a bank containing the movement data into memory. This should be created
with the AMAL accessory program. If you not using PLay at all then check that you've
correctly separated any Pause and Let instructions in your program.

Instruction only valid in autotest: You've inadvertently called either the Direct or the eXit
instructions from your main AMAL program.

Illegal instruction in Autotest: Autotest may only be used in conjunction with a limited
range of AMAL commands. It's not possible to move or animate your objects in any way
inside an autotest. So check for erroneous commands like Move, Anim or For .. Next.

Jump To/Within Autotest in animation string: The commands inside an autoest
function are completely separate from your main AMAL program. So AMAL does not allow
you to jump directly inside an AUtotest procedure. To leave an autoest,and return to your
main AMAL program you must use either eXit or Direct.

Label already defined in animation string: You've attempted to define the same label
twice in your AMAL program. All AMAL labels consist of just a single CAPITAL letter. So
Test and Total just different versions of the same label (T). This error is also generated
if you have accidentally separated two instructions by a ":" (colon). Use a semi-colon
instead.

Label not defined in animation string: This error is generated when you try to jump to
a label which does not currently exist in your animation string.

Next without For in animation string: Like it's Basic equivalent each For command
should be matched by a corresponding Next. statement. Check any nested loops for an
spurious Next command.

Syntax error in animation string: You've made a typing mistake in one of your animation
strings. It's easy to cause this error by accidentally entering an AMAL instruction in full, just
like it's Basic equivalent.. Remember that AMAL commands only consist of one or letters
CAPITALS. So If you attempt to type instructions like:FOR or NEXT you'll get an error. The
correct syntax of these commands are For .. Next

196

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

•
II

II

•
II

II

Animation channels
AMOS allows you to execute up to 64 different AMAL programs simultaneously. Each
program is assigned to a specific animation channel.

Only the first 16 channels can be performed using interrupts. If you need to animate
more objects you'll have to turn off the interrupts using SYNCHRO OFF. You can now
execute the AMAL programs step by step using an explicit call to the SYNCHRO command
in your main program loop. As a default, all interrupt channels are assigned to the relevant
hardware sprite.

CHANNEL (Assign an object to an AMAL channel)

CHANNEL n TO object s

The CHANNEL command assigns an animation channel to a particular screen related
object. In AMAL, you're not restricted to a single channel per object. however. Any single
screen object can be safely animated with several channels if required. There are various

different forms of this instruction.

Animating a computed sprite
CHANNEL n TO SPRITE s

This assigns sprite number s to channel n. As a default, channels from 0 to 7 are
automatically allocated to the equivalent hardware sprite, and 8 to 15 are reserved for the
appropriate computed sprites.

In orderto animate the computed sprites from 16 onwards, you'll need to allocate them
directly to an animation channel with the CHANNEL command. As normal, sprite numbers
from 8 to 63 specify a computed sprite rather than a single hardware sprite. For example:

Channel 5 To Sprite 8:Rem Animates computed sprite 8 using channel 5.

The X,Y registers in your AMAL program now refer to the hardware coordinates of the
selected sprite. Similarly the current sprite image is held in register A.

Animating a blitter object
AMAL programs can also be used to animate blitter objects.

CHANNEL n TO BOB b

Allocates blitter object b to animation channel n. This object will be treated in an identical
way to the equivalent hardware sprite. The only difference is that registers X and Y now
contain the position of your bob in screen coordinates.

Note that if you've activated screen switching with the DOUBLE BUFFER command,
this will be automatically used for all bob animations. For a complete example see 8 from
the MANUAL folder.

197

Moving a screen
AMOS Basic allows you to freely position the current screen anywhere on your TV display.
Normally this is controlled with the SCREEN DISPLAY instruction. However, sometimes
it's useful to be able to move the screen using interrupts.

CHANNEL n TO SCREEN DISPLAY d

This sets the channel n to screen number d. Screen d can be defined anywhere in your
program. You'll only get an error if the screen hasn't been opened when you start your
animation.

The X and Y variables in AMAL now hold the position of your screen in hardware
coordinates. Register A is not used by this option and you can't animate screens using
Anim. Otherwise all standard AMAL instructions can be performed as normal. So you can
easily use this system to "bounce" the picture around the display. Examples:

Load Iff "AMOS_DATA: IFF/Frog_screen.lFF",1
Channel ° To screen display 1
Amal O,"Loop: Move 0,200,100; Move 0,.200,100; Jump Loop"
Amal on ° : Direct

Load Iff "AMOS_DATA: IFF/Frog_screen.lFF",1
Channel ° to screen display 1
Rem Screen can only be displayed at certain postions in the X
Amal O,"Loop: Let X=XM; Let Y=YM; Pause; Jump Loop"
Amal On : Direct

For a further example of this technique, load Example 14.4 from the MANUAL folder. This
demonstrates how the SCREEN DISPLAY can be used in conjunction with the menu
commands to slide the menu screen up and down your display. It's similar to the display
system found in Magnetic Scrolls' excellent series of adventures.

Hardware Scrolling
Although hardware scrolling can be performed using AMOS Basic's SCREEN OFFSET
command, it's often easiest to animate your screens using AMAL instead as this generates
a much smoother effect.

CHANNEL n TO SCREEN OFFSET d

This assigns AMAL program number nto a screen d, forthe purpose of hardware scrolling.
The X and Y registers now refer to the section ofthe screen which is to be displayed through
your TV. Changing these registers will scroll the visible screen area around the display.
Here's an example:

Screen Open 0,320,500,32,lowres : Rem Open an extra tall screen
Screen Display 0,,45,320,250
Load Iff "AMOS_DATA:IFF/Magic_Screen.IFF"
Screen Copy 0,0,0,320,250 To 0,0,251

198

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

Screen 0 : Flash off : Get palette (0)
Channel 0 to Screen Offset 0
Amal O,"Loop: Let X=XM-128; Let Y=YM-45; Pause; Jump Loop"
Amal On : Wait Key

This program allows you to scroll through the screen using the mouse. Try moving the
mouse in direct mode. For a further example of hardware scrolling, see Example 14.5.

Changing the screen size
CHANNEL n TO SCREEN SIZE s.

This allows you to change the size of a screen using AMAL. s is the number of the screen
to be manipulated. Registers X and Y now control the width and height of your screen
respectively. They're similar to the Wand H parameters used by the SCREEN DISPLAY
command. Example:

Load Iff "AMOS _ DATA:IFF/Magic _ Screen.lFF" ,0
Channel 0 To Screen Size 0
Screen Display 0",320,1 : Rem Set the screen size to 1
A$="Loop: For RO=O To 255 ; Let Y=RO ; Next RO; "
A$=A$t"For RO=O To 254; Let Y=255-RO; Next RO; J Loop"
Amal O,A$: Amal On : Direct

Rainbows
CHANNEL n TO RAINBOW r

This option generates a rainbow effect within an AMAL program. As usual n is the number
of an animation channel from 0 to 63. ris an identification number of your rainbow (0-3).

X holds the current BASE of your rainbow. This is the first colour of your rainbow
palette to be displayed. Changing it will make the rainbow appear to turn. Y contains the
line on the screen at which the rainbow effect will start. If you alter this value, the rainbow
effect will move up or down. All coordinates are measured in hardware format.

Register A stores the height of your rainbow on the screen. A demonstration of this
system can be found in 11. See the AMOS Basic RAINBOW command for more details.

Advanced Techniques
The AUTOTEST system
Normally all AMAL programs are performed in strict order from start to finish. Inevitably
some commands such as Move and For. .. Next will take several seconds to complete.
Although this will be fine in the vast majority of cases it may lead to significant delays in the
running of certain programs. Take the following simple program:

Load "AMOS_DATA:Sprites/octopus.abk" : Get Sprite Palette

199

Sprite S, 130,50, 1
AmaIS,"Loop: Let RO=XM-X; Let R1=YM-Y; Move RO,Rl,50; Jump Loop" II
Amal On : Direct

As you move the mouse, the sprite is supposed to follow it around on the screen. However
in practice the response time is quite sluggish, because the new values of XM and YM are II
only entered after the sprite movement has totally finished. Try moving the mouse in a
circle. The octopus is completely fooled!

Autotest solves this problem by performing your tests at the start of every VBL, before
continuing with the current program. Your tests now occur at regular 1/50 intervals, leading II
to a practically instantaneous response!

Autotest commands
The syntax of Autotest is:

AUtotest (tests)

tests can consist of any of the following AMAL commands.

Let

L reg=exp

This is the standard AMAL Let instruction. It assigns the result of an expression to register
reg.

Jump

Jump label

The Jump command jumps to another part of the current autotest. Label is defined using
the colon ":" and must lie inside the autotest brackets.

eXit

Leaves the autotest and re-enters the main program from the point it left off.

Wait

Wait turns off the main AMAL program completely, and only executes the Autotest.

II

II

" II
In order to simplify the testing process inside an autotest routine there's a specially
extended version of the AMAL If statement. This allows you to perform one of three actions II
depending on the result of the logical expression expo

200 II

II

II

II

II

II

II

II

II

II

II
i II

II

II

II

if exp Jump L (Jumps to another part of the autotest)
If exp Direct L (Chooses part of the program to be executed after an autotest)
If exp eXit (Leaves autotest)

On

ON restarts the main program again after a previous Wait instruction. This lets you wait for
a specific event such as a mouse click without wasting valuable processor time.

Direct

Direct label

Direct changes the point at which the main program will be resumed after your test. AMAL
will now jump to this point automatically at the next vertical blank period. Note that label
must be defined outside the Autotest brackets.

Inside Autotest
Here's the previous example rewritten using the Autotest feature.

Load "AMOS _ DATA:Sprites/octopus.abk"
Sprite 8,130,50,1 : Get Sprite Palette
A$="AUtotest (If RO<>XM Jump Update"
A$=A$+"lf R1<>YM Jump Update else eXif'
A$=A$+"Update: Let RO=XM; Let R1=YM; Direct M)": Rem End of autotest
A$=A$+"M: Move RO-X,R1-Y,20 Wait;": Rem Try changing 20 to different values!
Amal 8,A$: Amal on

The sprite now smoothly follows your mouse, no matter how fast you move it. The action
of this program is as follows:

Every 50th of a second the mouse coordinates are tested using the XM and YM
functions. If they are unchanged since the last test, the Autotest is aborted using the eXit
command. The main program now resumes precisely where it left off.

However if the mouse has been moved, the autotest routine will restart the main
program again from the beginning (label M) using the new coordinates in XM and YM
respectively.

Timing considerations

UPDATE EVERY (Save some time for your Basic programs)

UPDATE EVERY n

Although most AMAL programs are performed practically instantaneously, any objects
they manipulate need to be explicitly drawn on the Amiga's screen.

The amount of time required for this updating procedure is unpredictable and can vary
during the course or your program. This can lead to an annoying jitter in the movement

201

patterns of certain objects.
The UPDATE EVERY command slows down the updating process so that even the

largest object can be redrawn during a single screen update. This regulates the animation II
system and generates delightfully smooth movement effects.

n is the number of vertical blank periods (50ths of second) between each screen
update. In practice you should start off with a value of two, and gradually increase it until II
movement is smooth.

One useful side effect of UPDATE EVERY, is to reserve more time for Basic to execute
your programs. With judicious use of this instruction, it's sometimes possible to speed up
your programs by as much as 30%, without destroying the smoothness of your animation II
sequences.

Beating the 16 object limit

SYNCHRO (Execute an AMAL program directly)

SYNCHRO [ON/OFF)

Normally AMOS Basic will allow you to execute up to 16 different AMAL programs at a time.
This limit is determined by the overall speed of the Amiga's hardware. Each AMAL program
takes its own slice of the available processor time. So if you're using the standard interrupt
system, there's only enough time to execute around 16 separate programs.

The SYNCHRO command allows you to exceed this restriction by executing your
AMAL programs directly from Basic. Instead of using interrupts, all AMAL programs are
now run using a single call to the SYNCHRO command. Since AMAL programs execute
far faster than the equivalent Basic routines, your animations will still be delightfully
smooth. But you will now be able to decide when and where your AMAL routines will be
performed in your program.

One additional bonus is that you can now include collision detection commands such
as Bob Color Sprite Col directly in your AMAL routines. These are not available from the
interrupt system as they make use of the Amiga's blitter chip. This would be impossible
using interrupts. .

Before calling SYNCHRO you first need to turn off the interrupts with SYNCHRO OFF.
It's important to do this before defining your AMAL programs, otherwise you won't be
allowed to use channel numbers greater than 15 without an error.

Due of the sheer power of the animation system, it's nearly possible to write entire
arcade games completely in AMAL. This leaves your Basic program with simple jobs such
as managing the hi-score table and loading your attack waves from the disc. The results
will be indistinguishable from pure machine code. A good example is Cartoon Capers, the
first commercial games release that's written entirely in AMOS.

A demonstration of SYNCHRO can be found in Example 14.6 from the MANUAL
folder.

STOS compatible animation commands
The original STOS Basic included a powerful animation system which allowed you to move
your sprites in quite complex patterns using interrupts. At the time, these commands were
hailed as a breakthrough.

202

II

II

II

II

II

II

II

II

II

II

II

II

II

II

Although they've now been overshadowed by the AMAL system, they do provide a
simple introduction to animation on the Amiga. So AMOS provides you with the entire
STOS animation system as an extra bonus!

If you're intending to convert STOS programs to AMOS, you'll need to note the
following points:

• Unlike STOS, the movement patterns in AMOS Basic can be assigned to any animation
channel you like. The Move commands can therefore be used to move bobs, sprites or
screens, using exactly the same techniques.

As a default, all animation channels are assigned to the equivalent hardware sprites.
In practice you may find it easier to substitute blitter objects as these are much closer to
the standard STOS Basic sprites. Add a sequence of CHANNEL commands to the start
of your program like so:

Channel 1 to bob 1
Channel 2 to bob 2

Don't forget to call DOUBLE BUFFER during your initialisation procedure, otherwise your
bobs will flicker annoyingly when they are moved .

• The same channel can be used for both STOS animations and AMAL programs. So it's
easy to extend your programs once they've been successfully converted into AMOS
Basic. The order of execution is:

AMAL
MOVE X
MOVEY
ANIM

MOVE X (Move a sprite horizontally)

MOVE X n,m$

MOVE X defines a list of horizontal movements which will be subsequently performed on
animation channel number n.

n can range from 0 to 15 and refers to an object you have previously assigned using
the CHANN EL command. m$contains a sequence of instructions which together determine
both the speed and direction of your object. These commands are enclosed between
brackets and are entered using the following format:

(speed,step,count)

There's no limit to the number commands you can include in a single movement string,
other than the amount of available memory.

speed sets a delay in 50ths of a second between each successive movement step.
The speed can vary from 1 (very fast) to 32767 (incredibly slow).

step specifies the number of pixels the object will be moved during each operation.

203

If the step is positive the sprite will move to the right, and if it is negative it will move left.
The apparent speed of the object depends on a combination of the speed and step

size. Large displacements coupled with a moderate speed will move the object quickly but
jerkily across the screen. Similarly a small step size combined with a high speed will also
move the object rapidly, but the motion will be much smoother. The fastest speeds can be
obtained with a displacements of about 10 (or -10).

count determines the number of times the movement will be repeated. Possible
values range from 0 to 32767. A count of 0 performs the movement pattern indefinitely.

In addition to the above commands, you can also add one of the following directives
at the end of your movement string.

The most important of these extensions is the L instruction (for loop), which jumps
back to the start of the string and reruns the entire sequence again from the beginning.
Example:

Load" AMOS _ DATA:Sprites/octopus.abk" : Get Sprite Palette
Sprite 1,130,100,1 : Rem Define Sprite 5
Move X 1,"(1,5,60)(l,·5,60IL"
Move On

The E option allows you to stop your object when it reaches a specific point on the screen.
Change the second to last line in the above example to:

Move X 1,"(1 ,5,30IEl 00"

Note that these end-points will only work if the x coordinate of the object exactly reaches
the value you originally designated in the instruction. If this increment is badly chosen the
object will leap past the end-point in a single bound, and the test will fail. Example:

Load" AMOS _ DATA:Sprites/octopus.abk" : Get Sprite Palette
Channell To Sprite 8 : Channel 2 To Sprite 10
Print At(0,51+"Looping OK"
Sprite 8,130,100,1
Move X 1,"(1,10,30)(l,·10,30IL"
Move On
Print At(O, 101+"Now press a key" : Wait Key
Sprite 1 0,140,150,2
Move X 2,"(1,15,20IL": Move On 2
Print At(O,151+"Oh dear!" :Wait Key

MOVE Y (Move an object vertically)

MOVE Y n,m$

This instruction complements the MOVE X command by enabling you to move an object
vertically along the screen. As before, n refers to the number of an animation sequence
you've allocated using the CHANNEL command, and ranges between 0 and 15.

m$holds a movement string in an identical format to MOVE X. Positive displacements
now correspond to a downward motion, and negative values result in an upward

204

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

movement. Examples:

Load" AMOS _ DATA:Sprites/octopus.abk" : Get Sprite Palette
Channell To Sprite 8: Sprite 8,130,10,1 : Rem Install sprite
Move Y 1,"10(l,1,180)L" : Rem Loop sprite from 10,10 to 190,10 continually
Channel 2 To Screen Display 0 : Rem Assign the screen postion to channel 2
Move Y 2,"(1,4,25)(1,-4,25)" : Rem Moves screen up and down
Move On : Wait Key

MOVE ON/OFF (Start/stop movements)

MOVE ON/OFF [n]

Before your movement patterns will be executed they need to be activated using the MOVE
ON command.

n refers to the animation sequence you wish to start, and can range from 0 to 15. If
it is omitted then all your movements will be activated simultaneously.

MOVE OFF has exactly the opposite effect: It stops the relevant movement sequences
in their tracks.

MOVE FREEZE (Temporarily suspend sprite movements)

MOVE FREEZE [n]

The MOVE FREEZE command temporarily halts the movements of one or more objects
on the screen. These objects can be restarted again using MOVE ON.

n is completely optional and specifies the number of a single object to be suspended
by this instruction.

=MOVON (Return movement status)

x=MOVON(n)

MOVON checks whether a particular object is currently being moved by the MOVE X and
MOVE Y instructions. It returns -1 (true) if object n is in motion, and 0 (false), if it is
stationary. Do not confuse this with the MOVE ON command.

Note that MOVON only searches for movement patterns generated using the MOVE
commands. It will not detect any animations generated by AMAL.

ANIM (Animate an object)

ANIM n,a$

Anim automatically flicks an object through a sequence of images creating a smooth
animation effect on the screen. These animations are performed 50 times a second using
interrupts, so they can be executed simultaneously with your Basic programs.

n is the number of the channel which specifies a sprite or bob to be animated by this

205

instruction.
a$ contains a series of instructions which define your animation sequence. Each

operation is split into two separate components enclosed between round brackets.
image is number of the image to be displayed during each frame of the animation.

de/ayspecifies the length oftime this image will be held on the screen (in 50ths of a second).
Example:

Load "AMOS_DATA:Sprites/octopus.abk": Get Sprite Palette
Channel 1 To Sprite 8: Sprite 8, 200,100,1
Anim 1,"(1,10)(2,10)(3,10)(4,10)"
Anim on : Wait key

Just as with the MOVE instruction, there's also an L directive which enables you to repeat
your animations continuously. So just change the ANIM command in the previous example
to the following:

Anim 1,"(1,10)(2,10)(3,10(4,10)L"

ANIM ON/OFF (Start an animation)

ANIM ON/OFF[n]

ANIM ON activates a series of animations which have been previously created using the
ANIM command. n specifies the number of an individual animation sequence to be
initialised. If it is omitted then all current animation sequences will be started immediately.

ANIM OFF [n]

This halts one or more animation sequences started by ANIM ON.

ANIM FREEZE (Freeze an animation)

I

ANIM FREEZE [n]

ANIIvl FREEZE temporarily freezes the current animation sequence on the screen. n
chooses a single animation sequence to be suspended. If it's not included, all current
animations will be affected. They can be restarted at any time with a simple call to the ANIM
ON instruction.

206

II

II

II

II

II

II

II

II

II

II

II

II

II

II

