The Coq Standard Library

Here is a short description of the Coq standard library, which is distributed with the system. It provides a set of modules directly available through the Require command.

The standard library is composed of the following subdirectories:

Init: The core library
Datatypes, DatatypesSyntax, Logic, LogicSyntax, Logic_Type, Logic_TypeSyntax, Peano, Prelude, SpecifSyntax, Specif, Wf
Logic: Classical logic and dependent equality
Berardi, Classical_Pred_Set, Classical_Pred_Type, Classical_Prop, Classical_Type, Classical, Decidable, Elimdep, Eqdep_dec, Eqdep, JMeq
Arith: Basic Peano arithmetic
Arith, Between, Compare_dec, Compare, Div2, Div, EqNat, Euclid, Even, Gt, Le, Lt, Max, Minus, Min, Mult, Peano_dec, Plus, Wf_nat
ZArith: Binary integers (those used by the Omega decision tactic)
auxiliary, fast_integer, Wf_Z, zarith_aux, ZArith_dec, ZArith, Zcomplements, Zhints, Zlogarithm, Zmisc, Zpower, Zdiv, Zsyntax
Reals: Formalization of real numbers
DiscrR, Ranalysis, Raxioms, Rbase, Rbasic_fun, Rdefinitions, Rderiv, Reals, Rfunctions, Rgeom, R_Ifp, Rlimit, Rseries, Rsigma, R_sqr, Rsyntax, Rtrigo_fun, Rtrigo, SplitAbsolu, SplitRmult, TypeSyntax
Bool: Booleans (basic functions and results)
BoolEq, Bool, DecBool, IfProp, Sumbool, Zerob
Lists : Monomorphic and polymorphic lists, Streams (infinite sequences)
ListSet, List, PolyListSyntax, PolyList, Streams, TheoryList
Sets: Sets (classical, constructive, finite, infinite, powerset, etc.)
Classical_sets, Constructive_sets, Cpo, Ensembles, Finite_sets_facts, Finite_sets, Image, Infinite_sets, Integers, Multiset, Partial_Order, Permut, Powerset_Classical_facts, Powerset_facts, Powerset, Relations_1_facts, Relations_1, Relations_2_facts, Relations_2, Relations_3_facts, Relations_3, Uniset
Relations: Relations (definitions and basic results)
Newman, Operators_Properties, Relation_Definitions, Relation_Operators, Relations, Rstar
Wellfounded: Well founded Relations
Disjoint_Union, Inclusion, Inverse_Image, Lexicographic_Exponentiation, Lexicographic_Product, Transitive_Closure, Union, Wellfounded, Well_Ordering
Sorting: Axiomatizations of sorts
Heap, Permutation, Sorting
Setoids:
Setoid
IntMap: Finite sets/maps as trees indexed by adresses
Adalloc, Addec, Addr, Adist, Allmaps, Fset, Lsort, Mapaxioms, Mapcanon, Mapcard, Mapc, Mapfold, Mapiter, Maplists, Mapsubset, Map

Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (3685 entries)
Tactic Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (10 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (106 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (2574 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (184 entries)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (118 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (527 entries)
Module Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (166 entries)

This page has been generated by coqdoc
Return to the Coq homepage