Well-founded relations and natural numbers |
Require
Lt.
Chapter
Well_founded_Nat.
Variable
A : Set.
Variable
f : A -> nat.
Definition
ltof := [a,b:A](lt (f a) (f b)).
Definition
gtof := [a,b:A](gt (f b) (f a)).
Theorem
well_founded_ltof : (well_founded A ltof).
Proof
.
Red.
Cut (n:nat)(a:A)(lt (f a) n)->(Acc A ltof a).
Intros H a; Apply (H (S (f a))); Auto with arith.
NewInduction n.
Intros; Absurd (lt (f a) O); Auto with arith.
Intros a ltSma.
Apply Acc_intro.
Unfold ltof; Intros b ltfafb.
Apply IHn.
Apply lt_le_trans with (f a); Auto with arith.
Qed
.
Theorem
well_founded_gtof : (well_founded A gtof).
Proof
well_founded_ltof.
It is possible to directly prove the induction principle going back to primitive recursion on natural numbers (induction_ltof1 ) or to use the previous lemmas to extract a program with a fixpoint (induction_ltof2 )
the ML-like program for |
let induction_ltof1 F a = indrec ((f a)+1) a
where rec indrec =
function 0 -> (function a -> error)
|(S m) -> (function a -> (F a (function y -> indrec y m)));;
the ML-like program for |
let induction_ltof2 F a = indrec a
where rec indrec a = F a indrec;;
Theorem
induction_ltof1
: (P:A->Set)((x:A)((y:A)(ltof y x)->(P y))->(P x))->(a:A)(P a).
Proof
.
Intros P F; Cut (n:nat)(a:A)(lt (f a) n)->(P a).
Intros H a; Apply (H (S (f a))); Auto with arith.
NewInduction n.
Intros; Absurd (lt (f a) O); Auto with arith.
Intros a ltSma.
Apply F.
Unfold ltof; Intros b ltfafb.
Apply IHn.
Apply lt_le_trans with (f a); Auto with arith.
Qed
.
Theorem
induction_gtof1
: (P:A->Set)((x:A)((y:A)(gtof y x)->(P y))->(P x))->(a:A)(P a).
Proof
induction_ltof1.
Theorem
induction_ltof2
: (P:A->Set)((x:A)((y:A)(ltof y x)->(P y))->(P x))->(a:A)(P a).
Proof
(well_founded_induction A ltof well_founded_ltof).
Theorem
induction_gtof2
: (P:A->Set)((x:A)((y:A)(gtof y x)->(P y))->(P x))->(a:A)(P a).
Proof
induction_ltof2.
If a relation R is compatible with lt i.e. if x R y => f(x) < f(y) then R is well-founded.
|
Variable
R : A->A->Prop.
Hypothesis
H_compat : (x,y:A) (R x y) -> (lt (f x) (f y)).
Theorem
well_founded_lt_compat : (well_founded A R).
Proof
.
Red.
Cut (n:nat)(a:A)(lt (f a) n)->(Acc A R a).
Intros H a; Apply (H (S (f a))); Auto with arith.
NewInduction n.
Intros; Absurd (lt (f a) O); Auto with arith.
Intros a ltSma.
Apply Acc_intro.
Intros b ltfafb.
Apply IHn.
Apply lt_le_trans with (f a); Auto with arith.
Save
.
End
Well_founded_Nat.
Lemma
lt_wf : (well_founded nat lt).
Proof
(well_founded_ltof nat [m:nat]m).
Lemma
lt_wf_rec1 : (p:nat)(P:nat->Set)
((n:nat)((m:nat)(lt m n)->(P m))->(P n)) -> (P p).
Proof
[p:nat][P:nat->Set][F:(n:nat)((m:nat)(lt m n)->(P m))->(P n)]
(induction_ltof1 nat [m:nat]m P F p).
Lemma
lt_wf_rec : (p:nat)(P:nat->Set)
((n:nat)((m:nat)(lt m n)->(P m))->(P n)) -> (P p).
Proof
[p:nat][P:nat->Set][F:(n:nat)((m:nat)(lt m n)->(P m))->(P n)]
(induction_ltof2 nat [m:nat]m P F p).
Lemma
lt_wf_ind : (p:nat)(P:nat->Prop)
((n:nat)((m:nat)(lt m n)->(P m))->(P n)) -> (P p).
Intros; Elim (lt_wf p); Auto with arith.
Save
.
Lemma
gt_wf_rec : (p:nat)(P:nat->Set)
((n:nat)((m:nat)(gt n m)->(P m))->(P n)) -> (P p).
Proof
lt_wf_rec.
Lemma
gt_wf_ind : (p:nat)(P:nat->Prop)
((n:nat)((m:nat)(gt n m)->(P m))->(P n)) -> (P p).
Proof
lt_wf_ind.
Lemma
lt_wf_double_rec :
(P:nat->nat->Set)
((n,m:nat)((p,q:nat)(lt p n)->(P p q))->((p:nat)(lt p m)->(P n p))->(P n m))
-> (p,q:nat)(P p q).
Intros P Hrec p; Pattern p; Apply lt_wf_rec.
Intros; Pattern q; Apply lt_wf_rec; Auto with arith.
Save
.
Lemma
lt_wf_double_ind :
(P:nat->nat->Prop)
((n,m:nat)((p,q:nat)(lt p n)->(P p q))->((p:nat)(lt p m)->(P n p))->(P n m))
-> (p,q:nat)(P p q).
Intros P Hrec p; Pattern p; Apply lt_wf_ind.
Intros; Pattern q; Apply lt_wf_ind; Auto with arith.
Save
.
Hints
Resolve lt_wf : arith.
Hints
Resolve well_founded_lt_compat : arith.