P
pair [constructor, in Coq.Init.Datatypes]
pairT [constructor, in Coq.Init.Logic_Type]
pair_sp [lemma, in Coq.IntMap.Mapiter]
Params [module]
Partial_Order [module]
Peano [module]
Peano_dec [module]
PER [inductive, in Coq.Sets.Relations_1]
Permut [module]
permutation [definition, in Coq.Sorting.Permutation]
Permutation [module]
permut_app [lemma, in Coq.Sorting.Permutation]
permut_cons [lemma, in Coq.Sorting.Permutation]
permut_middle [lemma, in Coq.Sorting.Permutation]
permut_refl [lemma, in Coq.Sorting.Permutation]
permut_right [lemma, in Coq.Sorting.Permutation]
permut_tran [lemma, in Coq.Sorting.Permutation]
perm_left [lemma, in Coq.Sets.Permut]
perm_right [lemma, in Coq.Sets.Permut]
PI [axiom, in Coq.Reals.Rtrigo]
Pigeonhole [lemma, in Coq.Sets.Image]
Pigeonhole_bis [lemma, in Coq.Sets.Infinite_sets]
Pigeonhole_principle [lemma, in Coq.Sets.Image]
Pigeonhole_ter [lemma, in Coq.Sets.Infinite_sets]
PI2_RGT_0 [lemma, in Coq.Reals.Rtrigo]
PI2_Rlt_PI [lemma, in Coq.Reals.Rtrigo]
PI4_RGT_0 [lemma, in Coq.Reals.Rtrigo]
PI4_RLT_PI2 [lemma, in Coq.Reals.Rtrigo]
PI6_RGT_0 [lemma, in Coq.Reals.Rtrigo]
PI6_RLT_PI2 [lemma, in Coq.Reals.Rtrigo]
PI_approx [axiom, in Coq.Reals.Rtrigo]
PI_lb [definition, in Coq.Reals.Rtrigo]
PI_neq0 [lemma, in Coq.Reals.Rtrigo]
PI_RGT_0 [lemma, in Coq.Reals.Rtrigo]
PI_ub [definition, in Coq.Reals.Rtrigo]
plus [definition, in Coq.Init.Peano]
Plus [module]
plus_acc [definition, in Coq.Arith.Plus]
plus_assoc_l [lemma, in Coq.Arith.Plus]
plus_assoc_r [lemma, in Coq.Arith.Plus]
plus_fct [definition, in Coq.Reals.Ranalysis]
plus_frac_part1 [lemma, in Coq.Reals.R_Ifp]
plus_frac_part2 [lemma, in Coq.Reals.R_Ifp]
plus_INR [lemma, in Coq.Reals.Rbase]
plus_Int_part1 [lemma, in Coq.Reals.R_Ifp]
plus_Int_part2 [lemma, in Coq.Reals.R_Ifp]
plus_is_O [lemma, in Coq.Arith.Plus]
plus_is_one [lemma, in Coq.Arith.Plus]
plus_IZR [lemma, in Coq.Reals.Rbase]
plus_IZR_NEG_POS [lemma, in Coq.Reals.Rbase]
plus_le_is_le [lemma, in Coq.Reals.Rbase]
plus_lt_is_lt [lemma, in Coq.Reals.Rbase]
plus_minus [lemma, in Coq.Arith.Minus]
plus_n_O [lemma, in Coq.Init.Peano]
plus_n_Sm [lemma, in Coq.Init.Peano]
plus_permute [lemma, in Coq.Arith.Plus]
plus_permute_2_in_4 [lemma, in Coq.Arith.Plus]
plus_Snm_nSm [lemma, in Coq.Arith.Plus]
plus_sym [lemma, in Coq.Arith.Plus]
plus_tail_plus [lemma, in Coq.Arith.Plus]
poly [lemma, in Coq.Reals.Rfunctions]
PolyList [module]
PolyListSyntax [module]
Pos [constructor, in Coq.ZArith.fast_integer]
POS [constructor, in Coq.ZArith.fast_integer]
positive [inductive, in Coq.ZArith.fast_integer]
positive_derivative [axiom, in Coq.Reals.Ranalysis]
positive_to_nat [definition, in Coq.ZArith.fast_integer]
positive_to_nat_mult [lemma, in Coq.IntMap.Adalloc]
positive_to_nat_2 [lemma, in Coq.IntMap.Adalloc]
positive_to_nat_4 [lemma, in Coq.IntMap.Adalloc]
POS_add [lemma, in Coq.ZArith.Zmisc]
POS_gt_ZERO [lemma, in Coq.ZArith.Zmisc]
pos_INR [lemma, in Coq.Reals.Rbase]
pos_Rsqr [lemma, in Coq.Reals.Rbase]
pos_Rsqr1 [lemma, in Coq.Reals.Rbase]
POS_xI [lemma, in Coq.ZArith.Zmisc]
POS_xO [lemma, in Coq.ZArith.Zmisc]
Pow [definition, in Coq.Relations.Relation_Operators]
pow [definition, in Coq.Logic.Berardi]
pow [definition, in Coq.Reals.Rfunctions]
Power [definition, in Coq.Wellfounded.Lexicographic_Exponentiation]
powerRZ [definition, in Coq.Reals.Rfunctions]
powerRZ_add [lemma, in Coq.Reals.Rfunctions]
powerRZ_le [lemma, in Coq.Reals.Rfunctions]
powerRZ_lt [lemma, in Coq.Reals.Rfunctions]
powerRZ_NOR [lemma, in Coq.Reals.Rfunctions]
powerRZ_O [lemma, in Coq.Reals.Rfunctions]
powerRZ_R1 [lemma, in Coq.Reals.Rfunctions]
powerRZ_1 [lemma, in Coq.Reals.Rfunctions]
Powerset [module]
Powerset_Classical_facts [module]
Powerset_facts [module]
Power_monotonic [lemma, in Coq.Reals.Rfunctions]
Power_set [inductive, in Coq.Sets.Powerset]
Power_set_Inhabited [lemma, in Coq.Sets.Powerset]
Power_set_PO [definition, in Coq.Sets.Powerset]
pow_add [lemma, in Coq.Reals.Rfunctions]
pow_lt [lemma, in Coq.Reals.Rfunctions]
pow_lt_1_zero [lemma, in Coq.Reals.Rfunctions]
pow_ne_zero [lemma, in Coq.Reals.Rfunctions]
pow_nonzero [lemma, in Coq.Reals.Rfunctions]
pow_O [lemma, in Coq.Reals.Rfunctions]
Pow_Rabsolu [lemma, in Coq.Reals.Rfunctions]
pow_RN_plus [lemma, in Coq.Reals.Rfunctions]
pow_R1 [lemma, in Coq.Reals.Rfunctions]
Pow_x_infinity [lemma, in Coq.Reals.Rfunctions]
pow_1 [lemma, in Coq.Reals.Rfunctions]
pred [definition, in Coq.Init.Peano]
pred_of_minus [lemma, in Coq.Arith.Minus]
pred_Sn [lemma, in Coq.Init.Peano]
Prelude [module]
Preorder [inductive, in Coq.Sets.Relations_1]
prod [inductive, in Coq.Init.Datatypes]
prodT [inductive, in Coq.Init.Logic_Type]
prodT_curry [definition, in Coq.Init.Logic_Type]
prodT_uncurry [definition, in Coq.Init.Logic_Type]
prod_continuity [lemma, in Coq.Reals.Ranalysis]
prod_continuous [lemma, in Coq.Reals.Ranalysis]
prod_derivable [lemma, in Coq.Reals.Ranalysis]
prod_derivable_pt [lemma, in Coq.Reals.Ranalysis]
prod_neq_R0 [lemma, in Coq.Reals.Rbase]
projS1 [definition, in Coq.Init.Specif]
ProjS1 [definition, in Coq.Init.Specif]
projS2 [definition, in Coq.Init.Specif]
ProjS2 [definition, in Coq.Init.Specif]
projT1 [definition, in Coq.Init.Specif]
projT2 [definition, in Coq.Init.Specif]
proj1 [lemma, in Coq.Init.Logic]
proj1_sig [definition, in Coq.Init.Specif]
proj2 [lemma, in Coq.Init.Logic]
proj2_sig [definition, in Coq.Init.Specif]
prop_eps [lemma, in Coq.Reals.Rlimit]
Prop_S [definition, in Coq.Setoids.Setoid]
prov [axiom, in Coq.Reals.Ranalysis]
Pser [definition, in Coq.Reals.Rseries]
pythagorean [lemma, in Coq.Reals.Rtrigo]
p_xor [definition, in Coq.IntMap.Addr]