ABEL Technical Documentation

Roman Schmocker
Reviewed by: Marco Piccioni

November 20, 2013

Contents

2.2.1 The frameworklayers|
.22 Important data structures|

[3__Backend abstraction|
3.1 REPOSITORY! s s e s s s .

B.3 Database wrapper|. L.

4 Database adaption|
.1 The generic layoutbackend|

Chapter 1

Introduction

ABEL (A Better Eiffelstore Library) aims at providing a unified, easy to
use object-oriented interface to different kinds of persistence stores, trying
to be as back-end-agnostic as possible.

For the basic read and write operations of the API have a look at the
ABEL tutorial.

This is an introduction to the general architecture of ABEL.

At the moment the supported back-ends are an in-memory database,
MySQL, and SQLite.

Chapter 2

Architecture overview

The ABEL library can be split into a front-end and a back-end part. The
front-end provides the main API, which is completely agnostic of the ac-
tual storage engine, whereas the backend provides a framework and some
implementations to adapt ABEL to a specific storage engine. The bound-
ary between backend and front-end can be drawn straight through the
deferred class REPOSITORY.

2.1 Front-end

If you've read the previous part of the documentation, then you should be
quite familiar now with the front-end. The main classes are:

e TRANSACTION: Represents a transaction and can be used for read and
write operations.

e QUERY: Collects information like the Criteria, Projection and the type
of the object to be retrieved (through its generic parameter).

e REPOSITORY: Hides the actual storage mechanism, and can be used
for read operations or for creating new transactions.

e CRITERION: Its descendants provide a filtering function for retrieved
objects, and it has features to generate a tree of criteria using the
overloaded logical operators.

You can see that the main objective of the front-end is to provide an
easy to use, backend-agnostic API and to collect information which the
backend needs.

2.2 Back-end

The front-end needs a repository which is specific to a persistence library,
and the back-end part provides a framework to implement these reposito-
ries (in cluster framework).

There are also some predefined repositories inside the back-end (clus-
ter backends), like the IN_MEMORY_BACKEND.

2.2.1 The framework layers

The framework is built of several layers, with each layer being more spe-
cific to a persistence mechanism as it goes down.

The uppermost layer is the REPOSITORY class. It provides a very high
level of abstraction, as it deals with normal Eiffel objects that may refer-
ence a lot of other objects.

One level below you can find the object graph traversal layer. It is
responsible to take an object graph apart into its pieces and generate a
more suitable representation for the next layer. During retrieval this layer
is responsible for reconstructing the object graph from the data.

On the next level there is the BACKEND layer. Its task is to map the
objects, represented as string-value pairs in class BACKEND_OBJECT, to a
specific storage engine like a database with some table layout.

The lowest level of abstraction is only significant for databases that
understand SQL. It provides a set of wrapper classes that hide connection
details and error handling, and it has features to execute SQL and retrieve
the result in a standardized way.

2.2.2 Important data structures

The key data structure is the OBJECT_IDENTIFICATION_MANAGER. It main-
tains a weak reference to every object that has been retrieved or inserted
before, and it assigns a repository-wide unique number to such objects. It
is for example responsible for the fact that an update to a newly created
object fails

Another important data structure is the kEYy_roID_TABLE, which maps
the object’s object_identirfier to the primary key of the corresponding
entry in the database.

2.2.3 Transactions

Every operation runs inside a transaction, and almost every part in the
back-end is aware of transactions. For example, the two important data
structures described above have to provide some kind of rollback mecha-
nism, and ideally all ACID properties as well.

Another important task of transactions is error propagation within the
back-end. If for example an SQL statement fails because of some integrity
constraint violation, then the database wrapper can set the error field in
the current transaction instance and raise an exception. As the exception
propagates upwards, every layer in the back-end can do the appropriate
steps to bring the library back in a consistent state, using the transaction
with the error inside to decide on its actions.

Chapter 3

Backend abstraction

The framework provides some very flexible interfaces to be able to support
many different storage engines. The three main levels of abstraction are
the REPOSITORY, the BACKEND and the database wrapper classes.

3.1 REPOSITORY

The deferred class REPOSITORY provides the highest level of abstraction,
as it deals with raw Eiffel objects including their complete object graph. It
provides a good interface to wrap a persistence mechanism that provides
a similarly high level of abstraction, like for example db4o [1].

The DEFAULT_REPOSITORY is the main implementation of this inter-
face. It uses the ORM layer and a BACKEND and is therefore the default
repository for persistence libraries which are wrapped through BACKEND.

3.2 BACKEND

Another important interface is the deferred class BAckenD. This layer only
deals with BACKEND_OBJECT or BACKEND_COLLECTION. It is responsible to
map them to the actual persistence mechanism which is usually a specific
layout in a database.

Its use however is not restricted to relational databases. The predefined
IN_MEMORY_DATABASE backend for example implements this interface to
provide a fake storage engine useful for testing, and it is planned to wrap
the serialization libraries using this abstraction.

3.3 Database wrapper

The last layer of abstraction is a set of wrappers to a database. It consists
of three deferred classes:

e The soL DATABASE represents a database. Its main task is to acquire
or release a SQI._CONNECTION.

e The 501 CONNECTION represents a single connection. It has to for-
ward SQL statements to the database and represent the result in
an iteration cursor of soI_Rows. Another important task is to map
database specific error messages to ABEL ERROR instances.

e The sor,_Rrowrepresents a single row in the result of an SQL query.

The wrapper is very useful if you want to easily swap e.g. from a
MySQL database to SQLite. However, keep in mind that the abstraction
is not perfect. For example, the wrapper doesn’t care about the different
SQL variations as it just forwards the statements to the database.

To overcome this problem, you can put all SQL statements in your im-
plementation of BACKEND into a separate class, and generally stick to stan-
dard SQL as much as possible.

Chapter 4

Database adaption

The BACKEND interface allows to adapt the framework to many database
layouts. Shipped with the library is a backend that uses a generic database
layout which can handle every type of object. It is explained in the next
section.

4.1 The generic layout backend

The database layout is based upon metadata of the class. It is very flexible
and allows for any type of objects to be inserted. The layout is a modified
version from the suggestion in Scott W. Ambler’s article “Mapping Objects
to Relational Databases” [2].

The ER-model in figure 4.1|is in fact a simplified view. The real model
uses another relationship between value and class to determine the run-
time type of a value, which is required in some special cases.

The backend located in backends/generic_database_layout maps
Eiffel objects to this database layout.

It is split into three classes:

e The METADATA TABLES MANAGER is responsible to read and write ta-
bles ps_classand ps_attribute.

e The GENERIC_LAYOUT_SQL BACKEND is responsible to write and read
the ps_value table. It is an implementation of BACKEND.

e The GENERIC _LAYOUT_ SQI_STRINGS collects all SQL statements. Its
descendants adapt the statements to a specific database if there is an
incompatibility.

ps_class

1

ps_value attributeid ps_attribute

Figure 4.1: The ER-Model of the generic database layout.

The functionality of the metadata table manager is quite easy: It just
caches table ps_class and ps_attribute in memory and provides fea-
tures to get the primary key of an attribute or a class. If the class is not
present in the database, then it will insert it and return the new primary
key.

Using the table manager, the GENERIC_LAYOUT_SQI BACKEND has all
information to perform a write operation: The attribute value inside the
BACKEND_OBJECT, the attribute foreign key which is stored inside the class
METADATA_TABLES_MANAGER, and the object primary key which is part of
the BACKEND_0OBJECT as well.

The retrieval operation is similar. First, the backend gets all attribute
primary keys of a specific class from the table manager, and then it ex-
ecutes an SQL query to retrieve all values whose attribute foreign keys
match the ones retrieved before. The backend does also sort the result by
the object primary key, such that attributes of the same object are grouped
together.

Bibliography

[1] db4o. http://db4o.com/.

[2] Scott W. Ambler. Mapping Objects to Relational Databases: O/R
Mapping In Detail.
http:/ /www.agiledata.org/essays/mappingObjects.html.

10

	Introduction
	Architecture overview
	Front-end
	Back-end
	The framework layers
	Important data structures
	Transactions

	Backend abstraction
	REPOSITORY
	BACKEND
	Database wrapper

	Database adaption
	The generic layout backend

