
Extending the Eiffel Library

for Data Structures and Algorithms: EiffelBase

Master Thesis

Olivier Jeger

jeger@computerscience.ch

Supervising Professor: Prof. Dr. Bertrand Meyer

Supervising Assistant: Dr. Karine Arnout

Chair of Software Engineering
Department of Computer Science

ETH Zurich

October 2004

mailto:jeger@computerscience.ch

Abstract

EiffelBase is intended to be a general, high-quality library covering the basic needs of
everyday programming. Many different data structures are provided, as well as algorithms
operating on those data structures. The library design dates back to 1985 in its first form.

In this project, the EiffelBase library is extended in a number of areas not yet covered.
Library classes for graphs, B-trees, topological sort and union-find are added. The main
focus is on the design of the graph classes.

The challenge is to stay at the same level of quality as the previous parts of EiffelBase
and to fit the new classes well into the existing class hierarchy.

Zusammenfassung

EiffelBase ist eine generische Bibliothek mit dem Ziel, qualitativ hochstehende Kompo-
nenten für den Programmieralltag bereitzustellen. Viele verschiedene Datenstrukturen
stehen zur Verfügung, sowie Algorithmen, welche auf diesen Datenstrukturen operieren.
Das erste Design der Bibliothek reicht zurück ins Jahr 1985.

In dieser Arbeit wird die EiffelBase Bibliothek in mehreren Bereichen erweitert. Es wer-
den Klassen für Graphen, B-Bäume, topologisches Sortieren sowie Union-Find hinzugefügt.
Das Augenmerk wird dabei hauptsächlich auf das Design der Graph-Klassen gerichtet.

Die Herausforderung besteht darin, auf dem gleichen Qualitätsniveau wie die bisherigen
Teile von EiffelBase zu bleiben und die neuen Klassen gut in die bestehende Klassen-
hierarchie einzubinden.

Table of Contents

Introduction 1

1 Graph library 3

1.1 Motivation for a graph library . 3
1.2 Graph theory . 3

1.2.1 Simple graphs and multigraphs . 4

1.2.2 Undirected, directed and symmetric graphs 4
1.2.3 Weighted graphs . 4
1.2.4 Paths and cycles . 4
1.2.5 Connectedness, components and reachability 4

1.2.6 (Minimum) spanning trees . 5
1.3 Bernd Schoeller’s solution . 6

1.3.1 Overview . 6
1.3.2 Representation of nodes and edges 6

1.3.3 Cursors and traversal . 6
1.3.4 Implementation 1: ARRAY MATRIX GRAPH 8
1.3.5 Implementation 2: LINKED GRAPH 9

1.4 Final design of the graph library . 9
1.4.1 Overview . 9
1.4.2 Graph nodes . 11
1.4.3 Edges . 12

1.4.4 Weighted edges . 12
1.4.5 Graph cursors and traversal . 13
1.4.6 Implemented graph algorithms . 13

1.5 Limitations . 15

1.6 Problems related to Eiffel and EiffelStudio 16
1.6.1 WEIGHTED EDGE cannot inherit from COMPARABLE . . 16
1.6.2 Non-deterministic precursor . 16

1.6.3 Technical problems in EiffelStudio 5.4 16
1.7 User guide . 17

1.7.1 Introduction . 17
1.7.2 Choice of the graph class . 17

1.7.3 Basic operations . 18
1.7.4 Directed and symmetric graphs . 19
1.7.5 Weighted graphs . 20

1.7.6 Advanced use of weighted graphs . 21
1.7.7 Graph algorithms . 23
1.7.8 Visualizing the graph . 24

vi Table of Contents

2 B-trees 25

2.1 Introduction . 25

2.2 Theoretical view . 25

2.2.1 Motivation . 25

2.2.2 General properties . 26

2.2.3 Basic operations . 27

2.3 Implementation . 31

2.3.1 Fitting B-trees into the tree cluster 31

2.3.2 BALANCED TREE features . 32

2.3.3 Implementation of class B TREE 33

2.4 Limitations and problems with existing tree classes 36

2.4.1 Class invariant from class TREE produces contract violation 36

2.4.2 Incompleteness of binary search tree operations 37

2.4.3 Vulnerability of binary search trees 37

2.4.4 Wrong implementation of sorted in binary search trees 38

2.4.5 Unusual linear representation of binary search trees 39

3 Topological sort 41

3.1 Introduction . 41

3.2 Mathematical formulation . 42

3.3 Algorithm . 44

3.3.1 Overall form . 44

3.3.2 Handling cyclic constraints . 44

3.3.3 Overlapping windows example . 45

3.4 Implementation . 46

3.4.1 Motivation for an object-oriented approach 46

3.4.2 Class design: TOPOLOGICAL SORTER 46

3.4.3 Storage of elements and constraints 47

3.4.4 Contracts . 47

3.4.5 Performance analysis . 50

3.4.6 Parameterizing topological sort . 51

4 Union-find 55

4.1 Introduction . 55

4.2 Representation of the sets . 55

4.3 Algorithms . 56

4.3.1 find . 56

4.3.2 union . 57

4.4 Implementation in Eiffel . 57

4.4.1 Class design . 57

4.4.2 Internal representation using arrays 58

4.4.3 find . 59

4.4.4 union . 60

4.4.5 Further routines . 60

4.5 Difficulties in the design of UNION FIND STRUCTURE 61

Table of Contents vii

5 Assessment and future work 63
5.1 Summary . 63

5.1.1 Thesis overview . 63
5.1.2 Graph library . 63
5.1.3 B-trees . 63
5.1.4 Topological sort . 64

5.2 Future work . 64
5.2.1 Improving the graph library . 64
5.2.2 Topological sort . 65
5.2.3 Balanced trees . 65

References 69

Introduction

The advantages of software libraries are evident: Reusing predefined components saves
valuable project time. Components that have been proven to be correct or that have been
intensively tested ensure an error-free execution, which is a gain for the client both in
software quality and in time. A convenience of libraries is that they can be nested: large
components can be composed of smaller parts.

Time is a valuable resource for every software project. It must not be wasted with
repeated development of the same components over and over again. With a library of
powerful, generic and high-quality components, the programmer can focus the “real” prob-
lem instead of the surrounding algorithms and data structures.

The requirements on a library are demanding. The library classes must be generic
enough to be reused in many applications. On the other hand, they must be specific enough
to also cover special needs of the client. The supplied algorithms and data structures have
to be powerful, but still easy to use. Every single component is required to be of the
highest quality. A deficiency would have impacts on many projects; finding the error would
consume valuable development time. The library designer should keep the “Open-Closed
principle” in mind. After the library is delivered, the class interfaces should not be changed
anymore. However, the library should be extendible to allow future enhancements. Last
but not least, a certain efficiency must be achieved to make a library usable.

A big problem for the library designer is that he does not know the client and its needs.
For certain problems, a design choice is good, for other problems it is bad. Many design
decisions made by the library provider are not clearly “right” or “wrong”, it depends on
the point of view.

The original design of the EiffelBase library dates back to 1985, but it is still used in
many new applications. It has stood the test of time, which is evidence of its solidity.
EiffelBase has been designed as a general, high-quality library to be used for everyday
programming. Together with the algorithms and data structures, the client gets a large
amount of contracts. They can help him use the different components correctly, which is
another step towards high-quality software.

In this project, we make four different extensions to the EiffelBase library:

1. A graph powerful graph library suited for many applications

2. B-trees as an implementations of balanced search trees

3. Topological sort

4. Union-find

2 Introduction

The challenge of this project was to keep up the same quality level as the previous parts
of EiffelBase. A lot of time was invested in the design phase to make the result as good as
possible. No satisfying result can be achieved when starting with an inadequate design.

The main focus was on the design of the graph library. Existing solutions were analyzed
and used as input for the final design. Besides the functionality of the classes, the ease of
use was also considered.

Chapter 1

Graph library

1.1 Motivation for a graph library

There are many applications in computer science that can be modeled with a graph. The
requirements for every problem are slightly different. Often, a specific graph implemen-
tation is made for each problem separately. Precious project time is consumed to build
up a correct graph implementation from scratch. It is needless to say that this is not
good practice. The programmer should pay full attention to the real problem, not to the
surrounding data structure. Our goal is to build a reliable, well-designed graph library
that is flexible enough to satisfy the needs for many different projects.

There are a lot of applications that can benefit from a graph library, both “real life”
problems and problems from the theory of computation:

• Modelling the public transport system of a city

• Finding critical task dependencies in project management

• Finding cycles in module dependencies

• Implementing finite automata with directed graphs

• Computing shortest path and minimum spanning trees

• Modelling the travelling salesman problem

1.2 Graph theory

The graphs we are considering here are graphs from discrete mathematics. A graph consists
of nodes (vertices) and edges which are connections between the nodes. An edge that
connects a node to itself is a loop. The number of edges attached to a node is called
degree. In directed graphs, there is a distinction between in-degree and out-degree which
denote the number of incoming and outgoing edges respectively.

Generally speaking, the term graph is used to denote an undirected, unweighted simple
graph. Those terms are explained briefly in the following sections. We consider only
“classic” graphs, not hypergraphs. In hypergraphs, an edge can connect more than two
nodes simultaneously.

4 Chapter 1 Graph library

1.2.1 Simple graphs and multigraphs

The word graph is often used as a synonym for simple graphs. In a simple graph, two
vertices can be directly connected by at most one edge. Multigraphs do not have this
restriction, they can have multiple edges between two nodes.

b

a

dc

b

a

dc

Figure 1.1: Simple graph and multigraph

1.2.2 Undirected, directed and symmetric graphs

The terms undirected and directed refer to the edges. Undirected edges can be traversed
in both directions, whereas directed edges are only allowed to be passed in the indicated
direction. A special case of directed graphs are symmetric graphs. In such graphs, every
edge that connects two disjoint nodes has a counterpart which points in the opposite
direction. Graph loops do not have a counterpart as this could break the simple graph
condition.

b

a

dc

b

a

dc

b

a

dc

Figure 1.2: Undirected graph, directed graph and symmetric graph

1.2.3 Weighted graphs

The edges of a weighted graph have an additional numeric attribute. The weight usually
refers to the “length” of an edge or the “cost”. A possible application of weighted graphs
is to find the shortest path from one node to another (see also section 1.2.4). For most
applications, the edge weights are considered to be positive.

1.2.4 Paths and cycles

A path is a sequence of connected edges: the end node of an edge is equal to the start
node of the subsequent edge in the path. All nodes of a path are mutually distinct. A
“path” where the first node and the last node are identical is called a cycle. Graph cycles
are also referred to as circuits.

A common problem for weighted graphs is to find the shortest path between two nodes,
where the length of a path is the sum of all its edge weights.

1.2.5 Connectedness, components and reachability

A node is reachable from another one if there exists a path between the two nodes. If
all nodes can be reached from any other node, a graph is called connected. Otherwise, it

1.2 Graph theory 5

consists of several components. Each component is itself connected, but cannot be reached
from within another component.

Directed graph edges can only be traversed in one direction. This leads to an additional
distinction between weak and strong connectedness. A strongly connected directed graph
is defined in the same way as a connected undirected graph: every node in a component
must be reachable from all other nodes in the same component. The weak connectedness
takes the edge direction into account. A graph is called weakly connected if there exists
a component y which can be reached from component x, but there is no connection back
from y to x. The graph on the left in figure 1.3 shows a weakly connected graph: starting
at node d, we can reach every other node, but d cannot be reached from a, b or c. The
addition of an edge from c to d leads to a strongly connected graph.

b

a

dc

b

a

dc

Weakly connected

component

Strongly connected

component

Figure 1.3: Weakly and strongly connected graph

1.2.6 (Minimum) spanning trees

A connected undirected graph containing no cycle is called a tree. There exist several
other, equivalent tree definitions:

• Path uniqueness: For every two vertices x and y, there exists exactly one path from
x to y

• Minimal connected graph: Removing a single edge breaks the tree into two compo-
nents

• Maximal graph without cycles: Adding an edge between any two tree nodes x and y

leads to a cycle

• Euler’s formula: A tree with n nodes has n − 1 edges

For every connected simple graph, there exists at least one spanning tree. It contains the
same node set as the original graph, but only a subset of its edges. A spanning tree is the
graph with the minimum number of edges, such that all nodes of the original graph are
connected.

In general, there are multiple spanning trees for a given graph. If we are dealing with
weighted graphs, a common problem is to find the minimum spanning tree, which is the
spanning tree with the minimal sum of all edge weights.

6 Chapter 1 Graph library

b

a

c

f

e

d
b

a

c

f

e

d

Figure 1.4: Undirected simple graph and one of its spanning trees

1.3 Bernd Schoeller’s solution

1.3.1 Overview

In 2003, Bernd Schoeller developed a graph library for Eiffel [1]. The goals were ambitious:
the library was intended to be generic, powerful, efficient, easy to use and in the spirit of
EiffelBase. It turned out to be hard to satisfy all those requirements at the same time.

A difficult issue when building a graph library is to reconcile the different graph proper-
ties which appear to be orthogonal. The most important among them are simple graph
versus multigraph, undirected graph versus directed graph and unweighted graph versus
weighted graph. The approach chosen by Bernd Schoeller was to encapsulate each con-
cept in a class. Thus, combinations can be achieved by using multiple inheritance. The
drawback of this method is the exponential growth of the number of classes. For every
new concept, the number of classes is doubled.

Like many other data structures in EiffelBase, the class hierarchy is divided into a
structural part and an implementation part. There are two implementations: the first
one is based on an adjacency matrix, the second one operates on a dynamically linked
structure of nodes and edges. There is no implementation of undirected graphs and the
adjacency matrix implementation is not complete. Figure 1.5 shows the class diagram,
divided into the clusters structures and implementations.

1.3.2 Representation of nodes and edges

Graph classes take one generic argument which is the node type. The library is designed
such that all operations are performed directly on the graph. There are objects for the
internal representation of the nodes, but the user has no access to them. In a graph with
nodes of type STRING, the query item returns the current node which is a STRING value,
not a NODE object containing the value. Hence the user must always query the graph to
get informations like the degree of a node.

Edges do not have any attributes, neither labels nor weights. They are just links between
two nodes. The library is designed to support both undirected and directed graphs. But
so far, only directed graphs have been implemented.

1.3.3 Cursors and traversal

Like many container data structures in EiffelBase, graphs can be traversed and have a
cursor. The cursor concept is a bit special in this case since there are two kinds of objects
in a graph: nodes and edges. We want a possibility to visit the nodes and also to walk
along their incident edges to explore the graph. A graph cursor is the combination of a

1.3 Bernd Schoeller’s solution 7

WALKABLE G[]
*

TRAVERSABLE G[]
*

FINITE G[]
*

CURSOR_STRUCTURE G[]
*

SET G[]
*

MULTIGRAPH G[]
*

GRAPH G[]
*

DIRECTED_MULTIGRAPH

G[]

*

LINKED_MULTIGRAPH

G[]
DIRECTED_GRAPH G[]

*

LINKED_GRAPH G[]ARRAY_MATRIX_GRAPH G[]

UNDIRECTED_MULTIGRAPH

G[]

*

UNDIRECTED_GRAPH G[]
*

structures

implementations

Figure 1.5: Bernd Schoeller’s class hierarchy

node and one of its incident edges (if there is any). This allows us to iterate over both
nodes and edges. Figure 1.6 shows an example:

b

c

a d

egc

Figure 1.6: Graph cursor gc positioned at node c, pointing to target b

When the cursor is positioned at a node, it can be “turned”with the commands left and
right to focus another outgoing edge. The flag exhausted indicates that the cursor went
around and has reached the first edge again. Invoking command forth moves the cursor
along the currently focused edge to the target node (figure 1.7):

8 Chapter 1 Graph library

b

c

a d

e

b

c

a d

e

gc.forthgc.right

gc

gc

Figure 1.7: Cursor modifications: turning and walking

All these features are inherited from the class WALKABLE. The current cursor position
is accessed through the query cursor and can be stored in a variable. To restore a saved
cursor position, the go to command is used. It is not mandatory for the go to command
that the given cursor position is reachable from the current node.

ABSTRACT_FS_WALKER G, L[]
*

BFS_WALKER G, L[] DFS_WALKER G, L[]

walkers

Figure 1.8: Cluster walkers with BFS WALKER and DFS WALKER

Besides directly using the cursors provided by the GRAPH class, there is another pos-
sibility to traverse a graph. The classes BFS WALKER and DFS WALKER explore the
graph in a breadth-first-search and depth-first-search strategy respectively. Internally,
the classes make use of graph cursors, whereas the user has only access to the command
forth. Depending on the strategy, the walker places the graph cursor automatically at the
appropriate position.

Both classes have ABSTRACT FS WALKER as common ancestor. The traversal tech-
nique is quite simple: starting from a node, all neighbors that have not been visited so far
are added to a container. The cursor is moved to the first node of that collection which
is then marked as visited. This procedure is repeated until all nodes have been processed.
There is only one small difference in the implementation of the breadth-first-search and
depth-first-search approaches: the type of the node container. BFS WALKER uses a
queue to store the nodes that must be visited, DFS WALKER uses a stack instead.

1.3.4 Implementation 1: ARRAY MATRIX GRAPH

The class ARRAY MATRIX GRAPH implements directed simple graphs, based on an
adjacency matrix. Contrary to linked graphs, this implementation has not been finished
and thus lacks some functionality. The only supported node type is INTEGER. The
adjacency matrix is a boolean two-dimensional array of equal height and width. An edge
between the nodes a and b implies that the value of adj matrix [a, b] is true, otherwise

1.4 Final design of the graph library 9

false. With this simple approach, it is not possible to support multigraphs. The integer
nodes are directly used as matrix indices, which can cause problems if the values are
negative or non-contiguous. For instance, the adjacency matrix for a graph with only one
single node with value 100 has already 10.000 entries. Probably, the approach is too much
simplified for real life usage.

A big advantage of the adjacency matrix approach is the efficiency of the data access.
Most operations are very fast, especially queries to find out whether two nodes are con-
nected or not. Unfortunately, working with an adjacency matrix does not scale for large,
and especially not for sparse graphs. The matrix grows to the square of the number of
nodes. If there are only a few edges, only a small part of the matrix contains useful
information, the rest is wasted.

As stated before, this implementation is not very elaborate and should mainly demon-
strate the feasibility of an adjacency matrix implementation.

1.3.5 Implementation 2: LINKED GRAPH

The linked graph implementation is more powerful than the adjacency matrix graph. The
nodes can be of an arbitrary type, not just INTEGER. The idea of this approach is to
maintain a list of incident edges for each node. Internally, the node values are wrapped
in a LINKED GRAPH NODE object. Each LINKED GRAPH NODE object holds a
doubly linked list of all its incident edges, which are of type LINKED GRAPH EDGE.
The LINKED GRAPH NODES in turn are arranged as a linear list.

Figure 1.9 on the following page shows an example graph with four nodes and the
corresponding internal representation. In the left grey box, we can see the the list of
LINKED GRAPH NODE objects, the right side shows the incident edges for each node.

This linked structure grows only in a linear way with the number of nodes and edges.
It is much better suited for graphs with only few edges compared to the amount of nodes.
However, this implementation is not perfect either. Many operations on a linked graph
are obviously quite inefficient: The linked structure needs always to be traversed to access
the concerned objects. Because no arrayed data structures or hash tables are used, only
linear search is applicable. For large graphs, this drawback is clearly noticeable.

1.4 Final design of the graph library

1.4.1 Overview

Studying the approach of Bernd Schoeller gave a nice overview over the difficulties when
designing a graph library. Although many concepts have been modeled nicely, the whole
project was either not powerful enough or became cumbersome for the user. It turned out
that the encapsulation of every concept in a new class was blowing up the class hierarchy
too much. There are already a lot of deferred classes; we must keep in mind that all classes
show up in each implementation again.

The approach for our implementation was rather to have a mix of inheritance and
boolean properties which are set at object creation time. The resulting design has four
deferred graph classes: GRAPH, UNDIRECTED GRAPH, WEIGHTED GRAPH and
UNDIRECTED WEIGHTED GRAPH. In addition, the notion of edge shall no longer be

10 Chapter 1 Graph library

hidden from the client and leads to the classes EDGE and WEIGHTED EDGE (figure
1.10).

a b® a d®

c d®

b c®

first_edge

first_edge

first_edge next_edge

next_edge

target

target

target

prev_edge

prev_edge
a

b

c

d

next

next

next

Instances of

[]LINKED_GRAPH_NODE STRING

target

target

c b®

Doubly linked circular list of

[,]LINKED_GRAPH_EDGE STRING NONE

prev_edge

prev_edge

next_edge

next_edge

prev_edge

next_edge

first_node

LINKED_GRAPH_NODE object
x

x y®
for edge from tox y

attr
Attribute attr

Void attribute

for node x

LINKED_GRAPH_EDGE object

b c

a d

Example linked graph

Internal representation

Figure 1.9: Example directed graph and its internal representation

1.4 Final design of the graph library 11

GRAPH

G -> HASHABLE, L[]

* edges

edgesWEIGHTED_GRAPH

[]G -> HASHABLE, L

*

UNDIRECTED_GRAPH

[]G -> HASHABLE, L

*

UNDIRECTED_WEIGHTED_GRAPH

[]G -> HASHABLE, L

*

EDGE

[]G -> HASHABLE, L

WEIGHTED_EDGE

[]G -> HASHABLE, L

++

Figure 1.10: Structure of the graph library

All graph classes have two generic parameters. The first one denotes the node type, the
second one is the type of the edge labels. Those labels can be of an arbitrary type and
are used to describe the edges. They must not be confused with edge weights, which are
an additional numeric attribute on weighted edges (see section 1.4.3).

The decision whether to have a simple graph or a multigraph is made at creation time.
For instance, the class LINKED DIRECTED GRAPH offers the following creation rou-
tines:

make simple graph: Create a simple graph with at most one edge between
two nodes

make symmetric graph: Create a simple graph where each edge has a counter-
part in the opposite direction

make multi graph: Create a graph with an arbitrary amount of edges be-
tween two nodes

make symmetric multi graph: Create a graph with an arbitrary amount of edges, all
present in both directions

This new class design leads to a couple of advantages:

• Only four classes have to be written for a new implementation.

• It is easier for the user to decide which class to use because there are not so many
classes.

• Algorithms which require to operate on edges are more intuitive to implement due
to the availability of EDGE objects.

1.4.2 Graph nodes

From the user point of view, graph nodes are not encapsulated in an additional NODE
object. A graph is intended to be a collection of items of type G and connections (edges)

12 Chapter 1 Graph library

between them. It is similar to a linked list, where the user is only interested in the list
items, not in the LINKABLE objects.

Because several operations take a node item as argument, we need a way to uniquely
identify them. Thus, it is not possible to have multiple nodes with the same value in
the graph. This property is reflected by the fact that the class GRAPH [G, L] inherits
from SET [G]. The nodes are identified by their value, not by their reference. The flag
changeable object comparison is immutably set to false and object comparison is true.

Graph nodes cannot be replaced after creation. Otherwise, the client could break the
SET property by assigning the same value to multiple nodes. To maintain consistency,
the objects of type G should not be changed after insertion in a graph either.

For consistency reasons, the queries nodes and edges return only a copy of the node and
edge set respectively. Otherwise, the user could add, remove or replace any element in
either of those collections without any notice to the graph, and the internal data structure
would get corrupted.

1.4.3 Edges

In discrete mathematics, a graph is defined as a set of nodes and a set of edges. Following
that principle, the current library provides also access to objects of type EDGE . An edge
comprises a start node, an end node and a label. Both nodes are immutable, so it is
impossible to redirect an edge.

The label can be of any type and is used to describe the edge. Most commonly, strings
are used as edge labels, but it is also possible to use more complex data types. It is even
possible to derive the edge weight from the label object (see also section 1.4.4).

Contrary to the graph classes, there are no distinct classes for directed and undirected
edges. Obviously, a directed graph contains only directed edges and vice versa. A flag
is directed is used to indicate the current status. For instance, this flag is used internally
when two edges are compared. Directed edges must point in the same direction to be
equal, undirected edges not necessarily.

Considering an undirected edge, it is not clear which node is the start node and which
is the end node. Therefore, a further query was introduced for undirected edges only:
opposite node takes a node as argument and returns the item at the opposite end of the
edge.

1.4.4 Weighted edges

The edges of weighted graphs have an additional attribute: a numeric weight. In our
graph library, there is a special edge type called WEIGHTED EDGE which defines the
attribute weight of type REAL. The edge weight is a constant value that is assigned when
the edge is inserted into a graph by a put edge command. At any time, the weight can be
changed by invoking set weight on the corresponding EDGE object.

There is a special feature in class WEIGHTED EDGE : it is possible to use another
measurement for the edge weight than the attribute weight. The user can define a function
which computes the edge weight from the current value of the edge label. An arbitrary
attribute or function which returns a REAL value can be used for that purpose. This can
be useful when there are multiple measurements that can be applied to an edge. Imagine
a traffic environment where you could store the distance between two locations and the

1.4 Final design of the graph library 13

travelling time in the edge label. You may want to know the shortest distance between
two locations or how to reach a location in minimum time. Instead of calling set weight
on each edge individually, the edge measurement can be exchanged for the whole graph
with one single command. In section 1.7.5, a detailed example with code extracts is given.

1.4.5 Graph cursors and traversal

The cursor concept in the graph library is similar to the one used in Bernd Schoeller’s
implementation (see section 1.3.3). A graph cursor consists of a node and one of its incident
edges, if there is any. You can set the cursor position to any node in the graph. Using the
commands left and right , the cursor can be “turned” towards the different incident edges.
The command forth moves the cursor along the currently focused edge.

One addition compared to Bernd Schoeller’s solution: our implementation keeps track
of the traversal history and adds a back command. It retracts the last step made by a
forth command. Because any previously visited node or edge may have been removed in
the meantime, the query has previous provides information whether the back command
can be invoked or not.

The graph cursor can be placed at any position in the graph by using the commands
search and go to. The first one takes a node, the latter a cursor as argument. For both
commands, it is not necessary that the given position is reachable from the current node.

The graph walkers are also adopted from Bernd Schoeller’s implementation. You have
the ability to traverse the graphs using the depth-first-search or breadth-first-search
strategy.

1.4.6 Implemented graph algorithms

Component count

The query components returns the number of (weakly connected) graph components. For
the implementation, we can benefit from our new union-find data structure which is
described in chapter 4. The algorithm to count the components works as follows: af-
ter putting all nodes into unary sets, we iterate over all graph edges. If the end nodes
of an edge are in different sets, those are merged because we are in the same component.
The number of sets at the end of the process will be the number of graph components.

Initialize uf as empty union-find structure.
for all graph nodes x do

uf.put (x)
end

−− All nodes are now stored as unary sets in ‘uf ’.
for all graph edges e do

set1 := uf.find (e.start node)
set2 := uf.find (e.end node)
if set1 /= set1 then

−− Components are connected: Merge them.
uf.union (set1, set2)

end

end

Result := uf.set count

14 Chapter 1 Graph library

Node reachability

To find out whether a node y is reachable from node x, we could use a backtracking algo-
rithm. In our graph library, we use an approach that makes use of matrix multiplication.
Consider the matrix adj to be the integer equivalent of an adjacency matrix: when two
nodes are connected, the corresponding matrix entry is 1, otherwise 0. This initial matrix
can be interpreted as representation of “all paths of length 1”.

The surprising property comes up when adj is multiplied with itself. The non-zero
entries in adj2 represent the paths of length 2. Similarly, the non-zero entries of adjn

correspond to the paths of length n.
To find out whether y is reachable from x, we have to examine the corresponding entry

in adj. As soon as the value is positive in adji for some i ≥ 1, a path exists. For a graph
with m edges, we need to compute adjm in the worst case. Matrix multiplications can be
done in polynomial time, a backtracking algorithm would have exponential complexity.

Cycle detection

The query has cycles indicates whether a graph contains cycles or not. The different kinds
of graphs allow different methods to check for cycles.

For undirected graphs, we can use Euler’s formula: an undirected simple graph contains
one or several cycles, if |edges| > |nodes| − components.

For directed graphs, we use the algorithm for the node reachability and check if there
is a path of length greater than zero connecting one of the nodes to itself.

Currently, it is not possible to check if an undirected multigraph contains cycles. The
routine has cycles returns false in such a case and a message is printed to the screen.

Minimum spanning tree

Finding the minimum spanning tree for an undirected weighted graph is another elegant
application of the union-find data structure. J.B. Kruskal has proposed the following
algorithm [2]:

Initialize union-find structure uf.
Make empty mst object in which the result is stored.
for all graph nodes x do

uf.put (x)
end

−−All nodes are now stored as unary sets in ‘uf ’.
Store all graph edges in edges, sorted by increasing weight.
for all e in edges do

set1 := uf.find (e.start node)
set2 := uf.find (e.end node)
if set1 /= set1 then

−−Edge connects two disjoint parts of the graph.
Add e to mst.
uf.union (set1, set2)

end

end

Result := mst

1.5 Limitations 15

1.5 Limitations

Cycle detection

Currently, the graph library cannot answer the queries has cycles for undirected multi-
graphs. For simple graphs, Euler’s formula can be applied which states that an undirected
graph has cycles if |edges| > |nodes| − components. For multigraphs, this formula cannot
be applied anymore since multi-edges are not considered to be graph cycles. To cover all
possible multigraph scenarios, it would be necessary to check each graph component for
cycles individually. This is not possible with the current implementation.

Adjacency matrix graph has no multigraph support

The implementation that is based on an adjacency matrix does not support multigraphs.
Usually, adjacency matrices contain boolean values which refer to whether two nodes are
connected or not. In our implementation, the item is not a boolean value, but an EDGE
object which represents the connection. In case there is no connection between two nodes,
the item is void. With that approach, only simple graphs can be supported.

Class hierarchy

A rather subtle issue is that UNDIRECTED GRAPH is a subtype of GRAPH. An algo-
rithm operating on a directed graph could produce unexpected results if the actual argu-
ment is an undirected graph, containing edges that can be traversed in both directions.
For instance, an algorithm that detects graph cycles in a directed graph would find a cycle
in an undirected graph with just one single edge, because there is a connection from the
first node to the second and vice versa. In a directed graph, this is a cycle, in an undirected
graph, it is not.

Edge traversal using graph walkers

Currently, the graph walkers keep only track of the visited nodes, but not of the visited
edges. With that approach, you can explore all nodes according to the selected strategy,
but the edges are not taken into account. Algorithms that operate on edges and need a
specific traversal strategy cannot work with the provided graph walkers. When an edge
traversal is supplied additionally, the walker interface needs to be reconsidered.

Unstable implementation of used library class

The LINKED GRAPH implementation may raise contract violations at runtime. It is
highly probable that they are not directly related to the graph library, but to the class
TWO WAY CIRCULAR. Internally, the incident edges of a node are stored in such a
doubly linked circular list. Either some contracts of TWO WAY CIRCULAR are not
reliable, or the implementation contains errors. For our test cases, it was sufficient to turn
the postcondition checking off for the corresponding cluster. However, this class should
be revised and corrected.

16 Chapter 1 Graph library

1.6 Problems related to Eiffel and EiffelStudio

1.6.1 WEIGHTED EDGE cannot inherit from COMPARABLE

Some algorithms like finding the shortest path require the edge set to be sorted by ascend-
ing weights. What you would do normally is to put all edges in a predefined container such
as SORTED LIST. Therefore, the class WEIGHTED EDGE was designed as a descen-
dant of COMPARABLE and the < operator was defined to compare the edge weights.
Surprisingly, the routine is equal of the class WEIGHTED EDGE raised a contract
violation with that setup: according to is equal in COMPARABLE, two objects are equal
when neither of them is greater than the other. In other words, the contract states that two
edges have to be equal when their weights are equal. Of course this is not true because
two edges can have the same weight but different labels or start and end nodes. That
specific contract made it impossible to use any predefined sorted container. The only
way this problem could be solved was to use an unsorted list together with a hand-made
implementation of insertion sort.

1.6.2 Non-deterministic precursor

Undirected graphs are a subtype of directed graphs. Since its edges are undirected, it
makes no sense to have both features in degree and out degree anymore. They are merged
into the feature degree. To compute the result, the Precursor is called since it is not
necessary to redefine the implementation. However, it is not clear whether in degree or
out degree is called, because there is no possibility to choose a precursor feature. Resolving
this indeterministic behavior is left to the compiler writer and is thus a design deficiency
of the Eiffel language.

1.6.3 Technical problems in EiffelStudio 5.4

The compiler of EiffelStudio 5.4 [3] crashes when using an expanded type as label type.
EiffelStudio quits with an error message and it is not possible to complete the compilation
process in such a case. The only solution is to use the appropriate reference type, for
example INTEGER REF instead of INTEGER.

1.7 User guide 17

1.7 User guide

1.7.1 Introduction

The following sections contain examples how the graph library is used. For most steps,
the corresponding Eiffel code is listed as well. We start by giving an overview over the
different graph classes and explain the basic operations. The complexity of the examples
increases step by step.

1.7.2 Choice of the graph class

The first step you have to do when using the graph library is to choose among the different
graph classes. There are two implementations, one is based on an adjacency matrix, the
other one uses a linked data structure. Currently, the ADJACENCY MATRIX GRAPH
implementation supports only simple graphs. Most of its operations are quite fast since
the access to both nodes and edges is efficient. Be aware that the adjacency matrix grows
to the square of the node amount. When only few edges are present in a graph with many
nodes, a lot of memory remains unused.

The LINKED GRAPH implementation supports any type of graphs. When dealing
with multigraphs, you should use this version. Some operations may not be as fast as
on adjacency matrix graphs, since the edges are arranged as an incidence list. Traversing
those lists may take some time.

For both implementations, four graph classes are available:

• XXX GRAPH : directed simple or multigraphs

• XXX UNDIRECTED GRAPH : undirected simple or multigraphs

• XXX WEIGHTED GRAPH : directed weighted simple or multigraphs

• XXX UNDIRECTED WEIGHTED GRAPH : undirected weighted simple or multi-
graphs

where the prefix XXX stands either for “ADJACENCY MATRIX ” or for “LINKED”. All
graph classes have two generic parameters. The first one denotes the node type, the second
one is the label type. Those labels are used to describe and to identify the edges.

The second choice concerns the creation routine. The LINKED GRAPH implementa-
tion offers four alternatives:

make simple graph: create a simple graph with at most one edge between
two nodes

make symmetric graph: create a simple graph where each edge has a counter-
part in the opposite direction

make multi graph: create a graph with an arbitrary amount of edges be-
tween two nodes

make symmetric multi graph: create a graph with an arbitrary amount of edges, all
present in both directions

18 Chapter 1 Graph library

Since the class ADJACENCY MATRIX GRAPH does not support multigraphs, you
can only choose between make simple graph and make symmetric graph.

1.7.3 Basic operations

A new graph node is added to a graph with the command put node. Like in a SET, it is
not possible to have the multiple nodes with the same value in the graph. Repeated calls
to put node with the same argument are ignored.

Edges are added using the put edge command. For the edges, the situation is different.
If you work with a multigraph, you can put as many edges between two nodes as you want.
For simple graphs, an appropriate precondition of put edge command ensures to have at
most one connection between two nodes.

Note that the argument list of put edge is different for weighted graphs and unweighted
graphs. The put edge command in WEIGHTED GRAPH takes an additional argument
of type REAL , which denotes the edge weight.

A node is removed from the graph by calling prune node. The library takes care that
no dangling edges will arise. All incident edges of the node are automatically be removed
as well.

To remove an edge, you should call prune edge with an EDGE object as argument. You
can get a reference to an EDGE object if you know all edge attributes. In such a case,
you can use the query edge from values. It takes the two end nodes and the edge label as
argument and returns the corresponding edge. If you are working on a weighted graph,
you must also supply the edge weight.

Let’s start with a small example: an undirected simple graph as shown in figure 1.11.

b

a

dc

Figure 1.11: Simple undirected graph

We choose the class ADJACENCY MATRIX UNDIRECTED GRAPH to demonstrate
the mapping to Eiffel:

build graph is

−− Build an example graph.
local

graph : ADJACENCY MATRIX UNDIRECTED GRAPH [STRING, NONE]
do

−− Create the graph.
create graph.make simple graph

−− Put the nodes into the graph.
graph.put node (”a”)
graph.put node (”b”)
graph.put node (”c”)
graph.put node (”d”)

1.7 User guide 19

−− Connect the nodes with edges.
graph.put unlabeled edge (”a”, ”b”)
graph.put unlabeled edge (”a”, ”c”)
graph.put unlabeled edge (”b”, ”c”)
graph.put unlabeled edge (”c”, ”d”)

end

If you want to have labeled edges, you can use the following code:

build labeled graph is

−− Build an example graph with labels.
local

graph : ADJACENCY MATRIX UNDIRECTED GRAPH [STRING, STRING]
do

−− Create the graph and put the nodes into it.
−− (same as above)

−− Connect the nodes with labeled edges.
graph.put edge (”a”, ”b”, ”a−b”)
graph.put edge (”a”, ”c”, ”a−c”)
graph.put edge (”b”, ”c”, ”b−c”)
graph.put edge (”c”, ”d”, ”c−d”)

end

The following graph will be the result:

b

a

dc

a-c

a-
b

b-c
c-d

Figure 1.12: Undirected graph with labeled edges

1.7.4 Directed and symmetric graphs

The graph in the previous example was undirected. The edges of a directed graph can only
be traversed in one direction. We can only get back if there is another edge pointing in the
opposite direction. A special case of directed graphs are symmetric graphs. All edges have
a counterpart that points in the opposite direction. Hence all nodes of a component are
strongly connected. Our graph library provides support for symmetric graphs. For any
edge you put into the graph, its symmetric counterpart is also inserted automatically (an
exception are graph loops which are not duplicated). The label and optionally the weight
are copied to the symmetric edge.

Figure 1.13 shows a directed graph and its symmetric equivalent. Below, the corre-
sponding Eiffel code is listed. To get the directed graph, the argument to the routine
fill graph is a graph created with make simple graph. To get the symmetric graph, it
must be created using make symmetric graph. You can see that the code is exactly the
same as for the undirected graph. It is only the graph class and the creation routine which
define the different graph shapes.

20 Chapter 1 Graph library

b

a

dc

b

a

dc

a-c

a-
b

b-c

c-d

a-c

a-
b

b-c

c-d
a-c

c-d
b-ca-

b

Symmetric edges

Figure 1.13: Directed graph and symmetric graph

fill graph (a graph : ADJACENCY MATRIX GRAPH [STRING, STRING]) is

−− Put some nodes and edges into ‘a graph’.
require

graph not void : a graph /= Void
do

−− Put the nodes into the graph.
graph.put node (”a”)
graph.put node (”b”)
graph.put node (”c”)
graph.put node (”d”)

−− Connect the nodes with edges.
graph.put edge (”a”, ”b”, ”a−b”)
graph.put edge (”a”, ”c”, ”a−c”)
graph.put edge (”b”, ”c”, ”b−c”)
graph.put edge (”c”, ”d”, ”c−d”)

end

1.7.5 Weighted graphs

The edges of weighted graphs have an additional numeric attribute, which is the weight.
Accordingly, weighted graphs have a different put edge command. It takes the weight
as additional argument of type REAL. Similarly, put unlabeled edge takes now three
arguments. Figure 1.14 shows our example graph, now with weighted edges. Below is the
corresponding Eiffel code:

b

a

dc

a-c

a-
b

b-c

c-d
2.5

7.
4

21
12.3

Figure 1.14: Weighted directed graph

1.7 User guide 21

build weighted graph is

−− Build an example graph with labels.
local

graph : ADJACENCY MATRIX WEIGHTED GRAPH [STRING, STRING]
do

−− Create the graph and put the nodes into it.
−− (same as in previous examples)

−− Connect the nodes with weighted edges.
graph.put edge (”a”, ”b”, ”a−b”, 7.4)
graph.put edge (”a”, ”c”, ”a−c”, 2.5)
graph.put edge (”b”, ”c”, ”b−c”, 21)
graph.put edge (”c”, ”d”, ”c−d”, 12.3)

end

The weight of an edge can be exchanged by calling set weight on the corresponding
EDGE object. If we do not yet have a reference to that edge, we can get it from the
graph. The code below shows how the weight of the edge c-d is replaced by half of its
original value:

exchange edge weight (graph : ADJACENCY MATRIX WEIGHTED GRAPH) is

−− Example how an edge weight is replaced.
−− Assume ‘graph’ is the same as in previous example.

local

edge : WEIGHTED EDGE [STRING, STRING]
new weight : REAL

do

−− Get appropriate EDGE object.
edge := graph.edge from values (”b”, ”c”, ”b−c”, 21)
new weight := edge.weight / 2
edge.set weight (new weight)

end

1.7.6 Advanced use of weighted graphs

The edge weights we have seen so far were exchangeable constant values. Another pos-
sibility is to calculate the edge weight directly from the label value. Imagine a complex
label type that contains multiple measurements values for an edge. You may want to find
to apply the shortest path algorithm for each of those measurement criteria.

As an example, we take a graph that represents a city map. The nodes are locations
and the edges are streets that connect the locations. For each edge, the street name, the
length and the time to walk along that street is stored. The class STREET that is used
for the edge labels might look as follows:

22 Chapter 1 Graph library

class

STREET

feature −− Access

distance : REAL
−− Length of the street

travel time : REAL
−− Time to walk from one end to the other

street name : STRING
−− Name of the street

end

To compute the edge weight from the label, a weight function must be defined to estab-
lish the connection between the label and the weight. The function takes a WEIGHTED
EDGE object as argument and returns a REAL value. The WEIGHTED EDGE ar-
gument is the edge to which the label belongs. The weight function can be defined in
any class. For our example, we define two different routines weight from distance and
weight from time. The only missing step is to tell the graph not to use the stored weight,
but a user-defined function to compute the edge weight. This is done using the command
enable user defined weight function:

class

MY CLASS

feature

replace edge weights (wg : WEIGHTED GRAPH [LOCATION, STREET]) is

−− Replace the default weights in ‘wg’ by values
−− computed from the edge labels.
−− All edge labels are assumpted to be non−Void.

do

−− Use the street length as edge weight
wg.enable user defined weight function (agent weight from distance)
−− Do some computations, e.g. find shortest path.
−− ...

−− Compute edge weights from travel time
wg.enable user defined weight function (agent weight from time)
−− Perform more computations, e.g. compute minimum spanning tree.
−− ...

end

1.7 User guide 23

restore weights (wg : WEIGHTED GRAPH [LOCATION, STREET]) is

−− Restore initial (stored) edge weights
do

wg.restore default weights
−− Perform even more operations
−− ...

end

feature {NONE } −− Weight functions

weight from distance (a edge : WEIGHTED EDGE): REAL is

−− Compute weight of ‘a edge’ based on the length of the street.
do

Result := a edge.label.distance
end

weight from time (a edge : WEIGHTED EDGE): REAL is

−− Compute weight of ‘a edge’ based on the travel time.
do

Result := a edge.label.travel time
end

end

As shown in the sample code, the user-defined weight functions can be deactivated by
calling restore default weights. After that, the default edge weights (stored in the attribute
weight) are used again.

1.7.7 Graph algorithms

To give a demonstration of the graph algorithms provided by the graph library, we use a
slightly more complex graph than before:

c

1.2

2.93.
4

d

b

c

a

e

4.8

7.1

2.6

0.
7 4.

7

Figure 1.15: Example weighted graph

Eulerian graphs

The graph shown in figure 1.15 might look familiar to you because it can be drawn in a
single closed line without lifting the pencil (without the labels, of course). Such a graph
is called Eulerian in graph theory. The query is eularian is available for both undirected
and directed graphs, although the implementation is different.

24 Chapter 1 Graph library

Shortest path

Consider a route planning system as an example to find the shortest connection between
two locations. In our example graph, we want to find the shortest path between c and d.

c

1.2

2.93.
4

b

c

a

e

4.8

7.1

2.6

0.
7 4.

7

d

Figure 1.16: Shortest path from c to d

The routine shortest path takes two node items as arguments and returns the shortest
path between these nodes. Because a path is a linear structure, it does not make sense to
return a whole graph. The result is just a list of all edges contained in the path.

Minimum spanning tree

In contrast to the shortest path, the minimum spanning tree is still a graph. It contains
the same nodes as the initial graph, but only a subset of its edges. The minimum spanning
tree is accessible on undirected weighted graphs via the routine minimum spanning tree.
Figure 1.17 shows the minimum spanning tree of our example graph.

c

1.2

2.93.
4

a

e

4.8

7.1

2.6

0.
7 4.

7

d

b

c

Figure 1.17: Minimum spanning tree

1.7.8 Visualizing the graph

Currently, there is no Eiffel library which is capable to visualize graphs. There is a freely
available third-party tool dot from the graphviz library [4] which can be used for that
purpose. The out routine of all graph classes returns a string of compatible format which
can then be stored in a text file. The tools dot and dotty are able to generate images of
various formats from that text file.

a

d

f

b

c e

Figure 1.18: Example graph visualization, generated by the dot tool

Chapter 2

B-trees

2.1 Introduction

B-trees belong to the family of balanced search trees. Search trees are used to implement
dictionary functions, such as put, has and remove in an efficient way. The items (keys)
of a search tree are sorted, i.e. all items in the left subtree are smaller or equal than the
current item and the items in the right subtree are greater or equal.

The problem when using search trees is that they can degrade to linear lists and the
efficiency gets lost. This is highly dependant on the insertion order of the items. Balanced
trees are designed to prevent such degrading. If possible, the items are arranged such that
all subtrees get the same height. If some tree operation breaks that property, the items
are rearranged. We will see that in B-trees, the dictionary functions have all logarithmic
time complexity, even in the worst case.

2.2 Theoretical view

2.2.1 Motivation

B-trees have been designed to hold large quantity of data, even amounts that do not fit
into main memory. In such cases, it is necessary to store parts of the tree in secondary
memory like hard disk drives. Compared to main memory, disk access is very slow. So
the goal is to minimize the amount of disk accesses during the tree operations.

Let’s take the search operation as an example: The proceeding to find an item x in a
search tree is as follows (a more detailed description is given in section 2.2.3): beginning at
the root, a node is examined to see whether it contains x or not. If the item has not been
found in the current node, the lookup has to be carried on in a child node. Fortunately,
we can benefit from the search tree property to determine the subtree where the search
must continue. The corresponding node must now be loaded into main memory. In the
worst case, when x is not part of the tree items, the lookup ends only when a leaf node
is reached. In such a case, h + 1 tree nodes are loaded from disk, where h is the height of
the tree.

The seek operation of the disk drive takes several milliseconds to complete, hence
avoiding any single disk access is valuable. In binary trees, the best case tree height

is
⌈

log2

(

N+1

2

)⌉

, where N is the number of tree items. The fundamental idea of B-trees

is to optimize the yield of a disk access by ruling out as many uninteresting subtrees as
possible. Thus, the path to find an item becomes shorter and less disk access is needed.
B-tree nodes contain many items and references to subtrees. The tree becomes very broad,

26 Chapter 2 B-trees

but the height remains particularly low. The optimal node size is equal to the disk’s block
size. This setup leads to the minimum amount of disk accesses.

Consider the following example: a B-tree whose nodes have 199 subtree references is
capable to store up to 1999999 items without having greater height than 4. The optimal
height of a binary tree containing the same items would be 20.

2.2.2 General properties

In contrast to most other trees, B-tree nodes have multiple items and multiple children.
The order of a B-tree defines the maximum and minimum amount of items and children.
In literature, this notion is not used consistently. We use the terminology proposed by
D. Knuth [5] which defines the order as the maximum number of children of a node.
Non-empty B-trees of order m have the following properties:

1. The root has at least 2 children.

2. Each non-leaf node except the root has at least dm/2e children.

3. Every node has at most m children.

4. Every node with i children has i -1 items and these items partition the keys in the
children in the fashion of a search tree.

5. The leaf nodes are empty and are all on the same level.

B-trees of order 3 are also called 2-3 trees. In general, B-trees of order m are called
dm/2e-m trees, because each inner node except the root has at least dm/2e and at most
m children.

...

k1 k2s1 s2 ... s
lk

l-1T

T1 T2 T
l

...k
l

sm

si i-th subtree reference

ki i-th key

void entries

Figure 2.1: B-tree of order m with l children

Figure 2.1 shows a B-tree of order m. Each non-leaf node except the root has items (or
keys) k1 to kl−1 and subtree references s1 to sl, where

⌈m
2

⌉

≤ l ≤ m. All items are unique;
the items stored in subtree si are smaller than ki and similarly, the items in subtree si+1

are greater than ki.

Let’s have a look at the height h of a B-tree compared to the number of items N :
The number of leaf nodes is maximized if every node has exactly m children. Hence the
maximum number of children Nmax = mh. A tree with N keys has N + 1 leaf nodes. The
height of a B-tree with N items is between the following bounds:

h ≤ 1 + logdm/2e

(

N+1

2

)

and h ≥ logm (N + 1).

2.2 Theoretical view 27

There are some special kinds of B-trees: in B+-trees, every item is mapped to an integer
key. The inner nodes contain only the keys, all effective data is stored in the leaf nodes. We
cannot use this approach because in our implementation, we use the item values as keys
directly. Another kind are B∗-trees: the nodes are kept at least 2/3 full by redistributing
the items in a special way. Since the complexity remains logarithmic, we have decided to
implement standard B-trees.

2.2.3 Basic operations

Searching

Searching for a key x in a B-tree is a generalization of the searching technique in binary
trees. We start at the root node and decide whether x is part of the items k1 to kl,
1 ≤ l < m. To accelerate that decision, binary search may be used. If x is not present
in the current node, the search continues in subtree si, where i is smallest index of an
item greater than x. If no such item exists, the search continues in sl+1 which is the last
non-void subtree. This procedure is repeated until x is found or until the search ends
without success in a leaf node.

It is obvious that at most h + 1 nodes have to be examined to get the result. As we
have seen in section 2.2.2, the height is logarithmic compared to the number of elements
and therefore the has query completes in O (logm (N)).

Insertion

The first step to insert a new key x into a B-tree is to search for x. This is necessary
because duplicate items are not allowed (see also section 2.3.3). New keys are not yet part
of the B-tree, so the search ends in an (empty) leaf node. Let p be the parent of that leaf
and si the subtree pointer to the leaf node where the search has ended. Due to the nature
of the search algorithm, x will be inserted into node p. There are two possible situations:

k1s1 si-1

...

siki-1

T1

p

Ti-1 Ti

ki
... kl s

l+1

T
l+1

Insert `x’

k1s1 si-1... siki-1

T1

p

Ti-1 Ti

ki
... kl s

l+1

T
l+1

sx

Tx

x

...

... ...

...

Tj (Empty) leaf nodes

The preceeding operation

ends in node Ti

has (x)

Figure 2.2: Insertion of x into non-full B-tree node

28 Chapter 2 B-trees

1. p has less than m − 1 items (figure 2.2):
In this case, x is placed in p between ki−1 and ki and a new empty leaf is inserted
just to the left of x.

2. p has already m − 1 items:
In this case we put x into p as described in case 1. Afterwards, p is split into two
parts: one node will contain the items k1 to kdm/2e−1 and the other one will contain
kdm/2e+1 to km. The middle item kdm/2e is inserted into ϕp, the parent of p. This
procedure is repeated recursively up to the root or until a non-full node is reached.
If the root node needs to be split, a new root is created which will get the two tree
nodes from the last split operation as child nodes and the middle item as single key.
Figure 2.3 illustrates the splitting process of an inner node:

p has one item too much

. . .

. . .

k1 ké ùm/2 +1

.

p

Split

jp

. . . kmké ùm/2ké ùm/2 -1

. . .

. . .

. . .

k1 ké ùm/2 +1

.

p

jp

. . . km

ké ùm/2

ké ùm/2 -1

. . .

p’

.

.

Figure 2.3: Splitting of node p after insertion of a new key

The insertion operation in a B-tree with order m and N items (and therefore N + 1
leafs) terminates at the latest after logdm/2e (N + 1) steps, which gives us the complexity
of O (log (N)).

Removal

It is difficult to remove an item x from an inner node of a B-tree, because we must
hold up the B-tree property number 4: “every node with i children has i -1 items (...)”.
Either we put a different item at the position of x, or we rearrange the tree such that
the corresponding node has one child less than before. Rearranging the tree is much too

2.2 Theoretical view 29

expensive. Instead, the following algorithm can be applied to remove an item: x is pushed
down the tree to the lowermost level. It is deleted and one of the (empty) leaf nodes is
removed from the tree. If the number of remaining keys in that node is less than dm/2e−1,
the tree must be balanced.

Pushing down x from an inner node towards the leafs is easy: it is simply exchanged
with its symmetric predecessor, which is the largest item smaller than x. Because we are
in an inner node, there is always such an element. The symmetric predecessor is in the
lowermost level of the tree, hence we have achieved our first goal. It is obvious that the
tree is not sorted at the moment, but the only item which is at the wrong position is x.
Since it will be removed in the next step anyway, the tree remains sorted at the end.

The difficult part is to remove x from the lowermost level in the tree. We must keep up
the condition that all nodes must have at least dm/2e − 1 items. Let T be the tree node
where x is located. The trivial part is when T has at least dm/2e items. Then, x and one
of the empty leaf nodes are removed; no further balancing is necessary. Otherwise, x is
removed and four cases are to be considered:

1. T is the root. If no keys remain, T becomes the empty tree. Otherwise, no balancing
is needed because the root is permitted to have as few as two subtrees and one single
key. For the remaining cases, T is not the root.

2. T has dm/2e− 2 items and it also has a sibling immediately to the left with at least
dm/2e keys. The tree is balanced by doing an LL-rotation as shown in figure 2.4 on
the next page. Notice that after the rotation, both siblings have at least dm/2e − 1
keys. Furthermore, the heights of the siblings remain unchanged. Therefore, the
resulting tree is a valid B-tree.

30 Chapter 2 B-trees

x Thas been removed from which has now too few items

. . .

. . .

k ’1 k ’2 k ’
l

kp
.

. . .

. . .

k1 k2 kn

n = m/2 - 2é ùl m/2é ù³

T’ T

T1
’ T2

’ T3
’ T

l
’ T

l+1
’ T1 T2 T3 Tn Tn+1

. . .

. . .

k ’1 k ’2

k ’
l

.

. . .

. . .

k1 k2 knT’ T

T1
’ T2

’ T3
’ T

l
’ T

l+1
’ T1 T2 T3 Tn Tn+1

both and have now at least m/2 - 1 itemsT T’

kp

LL-rotation

Figure 2.4: LL-rotation after pruning x

3. Mirror of the second case: T has dm/2e − 2 items and has a sibling immediately
to the right with at least dm/2e keys. In this case, the tree can be balanced by
doing an RR-rotation. The RR-rotation is exactly the same as the LL-rotation, just
performed in the opposite direction.

4. The immediate siblings have only dm/2e − 1 keys. In this case, there are too few
items to perform a rotation. The solution is to merge T with one of its siblings. The
new node will contain all items and children of T, all items and children of T’ and
kj , the appropriate item from the parent node (figure 2.5). It is not possible that the
merged node exceeds its capacity. If m is even, it will have m − 2 items, otherwise
it will have m − 1 items which is just the limit.
Because the item kj is pushed down into T, it must be removed from the parent node.
This is done in the same way as any other item is removed. Hence it is possible that
the parent node will also be merged with one of its siblings and so on, up to the root.

2.3 Implementation 31

T T’has too few items, has not enough items for a rotation

. . .

. . .

k ’1 k ’2 k ’
l

kj
.

. . .

. . .

k1 k2 kn

n = m/2 - 2é ù l = m/2 - 1é ù

T’T

T1
’ T2

’ T3
’ T

l
’ T

l+1
’T1 T2 T3 Tn Tn+1

. . .

. . .

k ’1 k ’2
. . .

. . .

k1 k2 knT

T1
’ T2

’ T3
’ T

l
’T1 T2 T3 Tn Tn+1

Merge with

push

T T’

kj down

ki kk

kj

.ki kk

k ’
l

T
l+1
’

T m m m mhas -2 items (if is even) or -1 items (if is odd)

Figure 2.5: Subtree merging after removing x

2.3 Implementation

2.3.1 Fitting B-trees into the tree cluster

In EiffelBase, there is already a cluster tree which contains implementations of several
kinds of trees. All existing trees can have an arbitrary amount of children, but only one
item per node. In contrast, the number of items in a B-tree node depends on the number
of children, so we chose not to inherit from an existing class.

B-trees belong to the family of balanced search trees. Therefore, an intermediate class has
been introduced between TREE and B TREE. The class BALANCED SEARCH TREE
may serve as base for future balanced search tree implementations like AVL-trees for
example.

Figure 2.6 shows the inheritance diagram including the new classes BALANCED TREE
and B TREE :

32 Chapter 2 B-trees

TREE G[]
*

BALANCED_SEARCH_TREE

G -> COMPARABLE[]

*
*

DINAMIC_TREE G[] BINARY_TREE G[]FIXED_TREE G[]

LINKED_TREE G[]

ARRAYED_TREE G[]

BINARY_SEARCH_TREE

G -> COMPARABLE[]

TWO_WAY_TREE G[]

B_TREE

G -> COMPARABLE[]

tree

Figure 2.6: Class hierarchy of cluster tree

2.3.2 BALANCED TREE features

The common properties of balanced search trees are encapsulated in this class. Any
operations which modify directly either the tree items or the arrangement of the subtrees
are not exported to the client anymore because balanced trees are self-organizing.

The new features of BALANCED SEARCH TREE are:

• put, extend (v : G)
Put v at appropriate position in the tree (unless v already exists).

• prune (v : G)
Remove v from the tree (v may be in a subtree).

• min : G
Minimum item stored in the tree

• max : G
Maximum item stored in the tree

• is sorted : BOOLEAN
Are all tree items still in sorted order? Modifying item values after insertion in the
tree may violate the search tree criterion.

• has unique items : BOOLEAN
Are all items in the tree distinct?

• is valid balanced search tree : BOOLEAN
Are both is sorted and has unique items satisfied?

• sort
Restore order of all items and remove duplicate items.

2.3 Implementation 33

The following routines are not available anymore because balanced trees are self-organizing:

• tree put (v : G)
Replace item in current node by v. (renamed feature put from class TREE)

• child put, child replace (v : G)
Replace item of current child node by v.

• put child (n : BALANCED TREE)
Make n a child of the current node.

• replace (v : G)
Replace item in current node by v.

• replace child (n : BALANCED TREE)
Replace current child node by n.

• prune tree (n : BALANCED TREE)
Remove n from the children. (renamed feature prune from class TREE)

• forget left
Detach all left siblings from the tree.

• forget right
Detach all right siblings from the tree.

• wipe out
Remove all children of current node.

• sprout
Detach current node from tree and make it a new root.

As described in section 2.3.3, the comparison criterion in balanced search trees is un-
changeably set to object comparison because there must not be duplicate keys in the tree.
However, it is still possible to destroy the order of a balanced tree or to introduce duplicate
items by modifying the item values after insertion in the tree. For that reason, all features
which rely on the search tree property have the precondition is valid balanced tree. The
command sort can be used to restore that condition.

2.3.3 Implementation of class B TREE

Storage of items and children

The items and children of a B-tree node are stored in a list. There are several aspects which
are to be considered for the right choice of the list class. Table 2.1 shows a comparison of
the two candidates:

34 Chapter 2 B-trees

LINKED LIST FIXED LIST

Having found the correct position, inser-
tion and removal completes in O(1)

All items to the right of the insertion po-
sition must be shifted one position to the
right. Similarly, a part of the list must
be copied to the left after removal

Only linear search is applicable to find
an item in the list.

Binary search may be used because the
items are increasingly sorted.

The list must be traversed to access the
i -th item.

Fast access to the i -th item because an
array is used to store the elements.

Table 2.1: Comparison of FIXED LIST and LINKED LIST for choice of item list.

It was not a priori clear which class would be more efficient in practice. We expected
LINKED LIST to produce the better results: the tree height is very low and hence the
search paths are quite short. So the advantage of binary search over linear search might
not be that significant. On the other hand, insertion and removal in linked lists does not
involve shifting any items which is a big advantage.

We have implemented both alternatives and have run performance tests to compare the
efficiency. In our test setup, a large amount of randomly chosen integer numbers were put
into a B-tree. The three basic operations put , has and prune have been applied many
times and the overall time consumption has been measured. Although the items were
chosen randomly, the effective test cases were identical for both implementations.

Continuous output after each step

B-tree order Items LINKED LIST FIXED LIST Speedup

3 651 4,757 ms 4,364 ms 8.3 %

3 689 5,118 ms 4,596 ms 10.2 %

9 815 5,237 ms 4,647 ms 11.3 %

Summarized output only at end of test run

B-tree order Items LINKED LIST FIXED LIST Speedup

100 99,513 13,705 ms 8,933 ms 34.8 %

200 39,242 6,924 ms 2,927 ms 57.7 %

200 99214 27,476 ms 11,284 ms 58.9 %

Table 2.2: Performance comparison between LINKED LIST and FIXED LIST

Table 2.2 shows the result of the benchmark tests. The listed values are the arithmetic
mean of five test runs. To our surprise, the FIXED LIST produced significantly better
results than the LINKED LIST implementation. The higher the tree order was, the larger
the relative time difference became. Apparently, the effects of binary search and array-
based memory access overbalance the performance loss when shifting around parts of the
list.

Leaf node optimization

So far, we have considered the leaf nodes of a B-tree to be empty. This allowed us to state
that any B-tree node with n items has n + 1 children. From the programmer’s point of
view, empty nodes are a useless waste of memory. It is not necessary to have a complete

2.3 Implementation 35

level of tree nodes which do not have any function other than “being leafs”. We have
decided to omit the lowest tree level.

......

k1 k2s1 s2 ... s
lk

l-1T

T1 T2 T
l si i-th subtree reference

ki i-th key

void entries

s
l-1

T
l-1

k1 k2s1 s2 ... s
lk

l-1T s
l-1

empty leaf nodesTi

Omitting empty nodes

Figure 2.7: Memory optimization by avoiding empty leaf nodes

Figure 2.7 shows the same tree once from the theoretical point of view and once how
it is implemented. All empty leaf nodes Ti are omitted. Instead, the node T becomes
itself a leaf node. The tree height is also affected; it is decreased by one compared to
the theoretical view. Obviously, the statements 1., 2. and 5. from section 2.2.2 are not
correct anymore in their current form. However, there is no impact at all to the overall
functionality of the B-tree. It is just an optimization for memory space.

Optimization of the put operation

A B-tree must not have duplicate item values, therefore an item x is only inserted if the
result of has (x) is false. The node where x will be put is exactly the same where the
has query ends. It is useless to search for that specific node again when inserting x. We
have equipped each B-tree node with an internal attribute matching node. The routine
has stores the node where the search has ended in the matching node attribute of the root
node. The put operation can now benefit from the stored value and can directly operate
on the correct tree node without performing the same search immediately again.

Linear representation

To compute the linear representation of all tree items, an in-order traversal is performed
and all items are stored in an arrayed list. In case the tree is sorted, this results in a sorted
list.

Be aware that B-trees have initially been designed to swap parts of the data to secondary
memory. The linear representation puts all tree items into a single list in main memory,
which can lead to memory shortage.

Sorting

To invoke any command which relies on the search tree property, a B-tree must be sorted.
The query is sorted reports the current status. If necessary, the tree can be sorted by
calling sort.

The first version of is sorted was implemented as follows: First, the linear representation
of all items was generated; then it was traversed to see if all items are stored in ascend-

36 Chapter 2 B-trees

ing order. It is obvious that the whole tree must be traversed before the result can be
computed, even if the first two items are already in wrong order.

The second and final version stops as soon as it encounters the first item which breaks
up the sorted order: the tree is traversed according to the in-order strategy and the
largest item which has been found until now is passed to the next node. In that node, the
appropriate item is compared to the largest item until now and if it is smaller, the query
stops and the result will be false. This method requires almost no additional memory
(unlike the linear representation) and is even more efficient because it stops earlier in case
of negative result.

Sorting a B-tree by rearranging the items seems to be quite difficult. For simplicity,
the following approach was taken in this implementation: A new tree is created and all
items of the current tree are inserted into the new tree using the put operator. The root
of current tree is replaced by the root of the new tree. The implementation of put makes
sure that the new tree is sorted and does not contain any duplicate items anymore.

Object identification and reference comparison

Search trees have two different comparison criteria: the search tree property requires that
items in the left subtree of a node are smaller or equal than the item in that particular node
and those in the right subtree have to be greater. The second comparison criterion comes
from the CONTAINER class in EiffelBase. Two objects can be compared for equality
either based on their references or based on their object value.

It is uncertain what should happen when the ≤ operator is used together with refer-
ence comparison. The implementation of both smaller or equal and greater or equal are
expressed in terms of the < and > operator only. Current <= other is implemented as
not other < Current. As we can see, the objects are only compared by size, but never
tested for equality. Hence it is possible that the result of ≤ is true although other is neither
smaller nor equal.

Another consequence when using reference equality is that the has query becomes quite
cumbersome in balanced trees. Imagine a balanced search tree that contains several dif-
ferent objects, but all of them have the same value. Because the tree is balanced, it is
probable that there will exist a right subtree containing the same item as its parent node.
This would violate the search tree property and hence it was decided to forbid reference
comparison in balanced trees.

We cannot guarantee that an items value is not changed after insertion into a balanced
tree. It is possible to modify a tree to contain twice the same object value. As we have
seen before, this can cause problems and therefore the operations put , prune and has have
the precondition has unique items.

2.4 Limitations and problems with existing tree classes

2.4.1 Class invariant from class TREE produces contract violation

The main limitation of the current implementation is that class invariant checking must
be turned off for the EiffelBase cluster. Objects of type TREE can have an arbitrary
number of children. The number of children is called arity, the maximum number of
children is child capacity. It is possible to iterate over the child nodes from child start

2.4 Limitations and problems with existing tree classes 37

until child after. But unfortunately, child after is defined differently than after of LIST-like
structures:

feature −− Status report
child after : BOOLEAN is

−− Is there no valid child position to the right of cursor?
do

Result := child index = child capacity + 1
end

In our opinion, it is wrong to define child after in terms of child capacity. It should
rather be true if child index is greater than arity. Otherwise it would not make sense
to differentiate between arity and child capacity. The feature child after should look as
follows:

feature −− Status report
child after : BOOLEAN is

−− Is there no valid child position to the right of cursor?
do

Result := child index = arity + 1
end

It is useless to redefine child after in class B TREE, since a class invariant in TREE
enforces the correctness of the initial definition. Currently, the consequence is a contract
violation when invariant checking is turned on.

2.4.2 Incompleteness of binary search tree operations

In general, search trees should provide at least three basic operations (dictionary
functions):

• Insertion: put (v : G)

• Lookup: has (v : G): BOOLEAN

• Removal: prune (v : G)

In class BINARY SEARCH TREE, only put and has are available. You have the ability
to prune subtrees, but not individual items.

2.4.3 Vulnerability of binary search trees

A basic property of search trees is the automatic arrangement of items. The put operation
must not overwrite the item in the current node, but place it at the appropriate position
in the tree. Otherwise, the binary search tree would be destroyed.

The put and extend operations in class BINARY SEARCH TREE are implemented
according to that concept. But nevertheless, it is possible to call replace on a tree node
and overwrite the current item. Since the feature is called on the tree object, one might
expect that the binary tree is rearranged such that the result remains a search tree. But
this is not the case, the item is just overwritten and the search tree is destroyed.

The solution would be either to rearrange the replaced item or to restrict the export
status of replace to BINARY SEARCH TREE only.

38 Chapter 2 B-trees

2.4.4 Wrong implementation of sorted in binary search trees

xT

x x� £ x > x�

le
ft

right

T� T�

Figure 2.8: Item arrangement in a binary search tree

According to figure 2.8, items in Tl must be smaller or equal than x and items in
T r must be greater than x. This property must hold for all nodes recursively. Class
BINARY SEARCH TREE provides the sorted query which checks if that property is
satisfied.

Unfortunately, the implementation compares x only with the immediate child items.
Cases where an item in a right subtree of T l is greater than x are not taken into account.
The trees shown in figure 2.9 will all be qualified as sorted although the ones with modified
values are not:

3

le
ft

rig
h

t

1

4

2

le
ft

right

1

4

3

le
ft

rig
h

t
1

2

2

le
ft

right

3

4
� � � � � 	 �
 � �

 �
� �

� � � � � � � � � �
� � � � �

Figure 2.9: All trees are qualified as sorted

The source code to build the modified tree in the left part of figure 2.9 looks as follows:

feature

sorted test is

−− Test ‘sorted’ feature of class ‘BINARY SEARCH TREE’.
local

bst : BINARY SEARCH TREE [INTEGER REF]
i, j, k : INTEGER REF
is sorted : BOOLEAN

do

−− Create ‘i’, ‘j’ and ‘k’.
create i
create j
create k

2.4 Limitations and problems with existing tree classes 39

i.set item (3)
j.set item (1)
k.set item (2)
−− Put ‘i’, ‘j’ and ‘k’ into a binary search tree.
create bst.make (i)
bst.put (j)
bst.put (k)
−− Modify item value of ‘k’.
k.set item (4)
−− Check if ‘bst’ is sorted.
is sorted := bst.sorted −− ‘is sorted’ will be True.

end

A possible correct implementation of sorted would be to perform an in-order traversal
and to check if the current item is always greater or equal than the maximum item until
now.

2.4.5 Unusual linear representation of binary search trees

The last remark is rather a style reproach than an error. Binary search trees are a sorted
data structure. Thus, it would seem natural that the linear representation holds the items
in ascending order. But the tree is traversed following the preorder strategy when the
linear representation is produced, which leads to a completely mixed up item arrangement.
We would have preferred an in-order traversal which takes exactly the same effort but leads
to a sorted list of items.

This kind of linear representation could even be used to answer the sorted query: The
linear representation must just be traversed sequentially and each item has to be greater
or equal than its predecessor.

Chapter 3

Topological sort

3.1 Introduction

Topological sorting is necessary when we want to order a number of elements that do not
have an absolute value. The only information we have is a set of binary relations between
some of the elements. For each pair involved in such a relation, we can state which element
must occur first in the output. The task is to find a linear ordering which conforms to all
constraints.

There are many situations where topological sorting can be used. Here are some exam-
ples:

• Produce a schedule from a set of tasks. Some tasks can only start after the completion
of other ones. A topological sort produces a schedule that conforms to all constraints.

• Windowed operating system: Find an order in which the windows must be drawn
to achieve the correct overlapping.

• Programming language with multiple inheritance: Generate a list of all classes in-
volved in a project, such that the ancestors appear before their heirs.

To illustrate the problem, we take the overlapping windows as example. To achieve the
layout shown in figure 3.1, the system must paint the windows in the correct order. Win-
dows which are overlapped must be drawn before those which overlap them.

a

b

d
e

c

Figure 3.1: Topological sort example: Overlapping windows

The windows do not have an absolute depth value (z-coordinate); we only have infor-
mation of the kind “x is behind y”. Listing these relations, we get the following set of
constraints:

• a is behind e

42 Chapter 3 Topological sort

• b is behind c

• c is behind e

• d is behind c

• d is behind e

The task is now to find a total order on the elements a-e that respects these constraints.
For our example, there exist several solutions; two possibilities are:

1. a, b, d, c, e

2. d, b, c, a, e

3.2 Mathematical formulation

We can formulate the topological sort problem in mathematical terms with sets, (acyclic)
relations and (total) order relations. Below, we provide definitions for these notions.

Definition: The topological sort problem

Given an acyclic relation r on a finite set, find a total order relation of which r

is a subset.

Definition: Relation

A relation over a set A (short for binary relation) — is a set of pairs of the form
[x, y] where both elements of the pair, x and y, are members of A.

Definition: Acyclic relation

A relation is acyclic if it has no cycle.

with:

Definition: Cycle in a relation

A cycle for a relation r over a set A is a non-empty sequence x1, . . . xm of
elements of A (m ≥ 1) such that all successive pairs [xi, xi+1] for 1 ≤ i ≤ m
belong to r, and xm = x1.

To succeed, topological sort requires an acyclic relation. However, the provided algorithm
is capable of partially processing cyclic constraints.

Definition: Predecessor

A predecessor of an element y for a relation r is an element x such that the pair
[x, y] belongs to r.

3.2 Mathematical formulation 43

No-predecessor theorem

For any acyclic relation p over a non-empty finite set A, there exists an element
x of A with no predecessor for p.

The proof of the no-predecessor theorem is given in [6]. The only part that is missing now
is the connection between the input relation and the sorted output. The output list is a
total order relation.

Definition: Order relation (strict, possibly partial)

A relation is an order relation if it satisfies the following properties for any ele-
ments x, y, z of the underlying set X :

Irreflexive: the relation has no pair of the form [x, x].
Transitive: whenever the relation contains a pair [x, y] and a pair [y, z], it also
contains the pair [x, z].

Definition: Total order relation (strict)

A total order is an order relation that additionally is:

Total : for any a and b, one of the following holds: [a, b] is in the relation; [b, a]
is in the relation; a = b.

We have seen that there must not be any cycles in the input for the existence of a topo-
logical sort. The statement does also hold the other way round:

Topological sort theorem

For any acyclic relation r over a finite set A, there exists a total order relation t

over A such that r ⊆ t.

The proof is by induction on the number of elements n in the set A. For n = 1, the set A

consists of a single element x. The only acyclic relation p in A is the empty relation, since
a relation containing the pair [x, x] would create a cycle. This proves the base step.

For the induction step, we assume that the theorem holds for n elements. We consider
an acyclic relation on a set A of n+1 elements. According to the no-predecessor theorem,
there is at least one element x with no predecessor.
Let A′ be A \ {x} and r′ be p \ {[x, y]} for any y ∈ A. Clearly, r′ is an acyclic relation
over A′ (removing pairs from a relation cannot create cycles). A′ has n elements; by the
induction hypothesis, there exists a total order t′ over A′ that is compatible with r′. The
relation t over A consists of the following pairs:

• all the pairs in t′

• all pairs of the form [x, y], where y is an element of A′

We can see that t is a total order and that p ⊆ t. The result is a total order compatible
with p.

44 Chapter 3 Topological sort

3.3 Algorithm

3.3.1 Overall form

The topological sort algorithm is inspired by the proof of the topological sort theorem.
The difference is that we reverse the induction step; we go from n to n − 1 elements.

The general idea of the algorithm is simple: Before an element x from A can be placed
in the sorted output, all of its direct and indirect predecessors must be processed. The
reverse of this statement is that any element without predecessors is ready to be added to
the sorted output. Let us rename our element set A to elements and the acyclic relation
to constraints. The total order on the elements is called sorted elements. The topological
sort algorithm looks as follows:

while elements is not empty do

Let x be an element without predecessor

Produce x as the next element of sorted elements

Remove x from elements

Remove all pairs starting with x from constraints

end

3.3.2 Handling cyclic constraints

One way to implement topological sort is to accept only cycle-free constraints. For a small
set of constraints, this may be easy to determine, but for large sets it is not a trivial task.
The solution in our implementation is more flexible. Depending on the input, we produce
the best possible result: If the constraints are cycle-free, the result is a total order on all
elements. Otherwise, the output contains all members of elements that are not involved
in a cycle.

The procedure to find cycles in the constraints and the sorting process have a lot in
common. The topological sort algorithm described in section 3.3.1 allows us to answer the
question for cycles quite easily. According to the no-predecessor theorem, there exists at
least one element without predecessor at each stage, as long as the input does not contain
any cycles. Conversely, there is no such item if there is a cycle. Hence we have found a
cycle if there is no element x, although elements is not empty.

Let candidates be the items without predecessor, ready to be written into sorted elements.
The refined version of our algorithm is now:

Put all members of elements without predecessor into candidates

while candidates is not empty do

Pick an element x from candidates

Produce x as the next element of sorted elements

Remove all pairs starting with x from constraints

Put all non-processed members of elements without predecessor into candidates

end

if elements is not empty then

Report cycle

end

3.3 Algorithm 45

3.3.3 Overlapping windows example

To illustrate the workflow of the topological sort algorithm, we reconsider the overlap-
ping windows example from section 3.1. On the right side of figure 3.2, we can see the
dependency graph that corresponds to the given windows a − e:

a

b c

d

e

a

b

d
e

c

Figure 3.2: Overlapping windows and corresponding dependency graph

The dependency graph contains all the information needed for the algorithm: The nodes
correspond to the elements set, whereas the edges are the constraints. An edge from node
x to node y signifies that the window x must be drawn before y. For the algorithm, we
are interested in the elements with no predecessor. It is easy to see that nodes without
any incoming edges meet that condition. Hence we can put a, b and d into candidates.
The first step is done, now we go for the main loop.

Let us assume we pick d as first element from candidates. The item d is removed from
elements, which corresponds to removing the node d from the dependency graph. The
equivalence for removing all pairs starting with d from the constraints is to remove all
edges starting at d from the graph. In our case, there are two such edges, one to node c

and one to node e. The resulting dependency graph looks as follows:

a

b c e

Figure 3.3: Dependency graph after removal of node d and its outgoing edges

Now we have the choice to pick either a or b from candidates. Let us assume we pick b

as next element, after that a, c and finally e. Our final linear order will then be d, b, a, c,
e.

In this example, we can clearly see the reason why the topological sort problem can have
multiple solutions: If candidates contains multiple elements at some point, we have the
free choice which element to take. The absence of further constraints for these elements
leads to multiple output possibilities. The different strategies for picking an element are
described in section 3.4.6.

46 Chapter 3 Topological sort

3.4 Implementation

3.4.1 Motivation for an object-oriented approach

One possibility for the implementation would be an algorithmic approach like this:

topologically sorted (elements : ...; constraints : ...): LIST [...] is

−− Enumeration of the members of ‘elements’,
−− in an order compatible with ‘constraints’

However, it is not clear in which class this routine should be integrated. Putting it into
a container class would be a possibility or using a utility class. But this solution does not
at all conform to the spirit of Eiffel. The implementation we chose for EiffelBase follows
the approach given in the textbook Touch of Class [6]. The proposed solution is a much
more flexible and elegant object-oriented approach. The merits are as follows:

• abstraction into class instead of single function

• command-query separation

• genericity for the element type

• more flexibility for the result: information about cyclic constraints and partial solu-
tion in such cases

3.4.2 Class design: TOPOLOGICAL SORTER

The implementation consists of a single class TOPOLOGICAL SORTER [G]. Any in-
stance of it represents an instance of the topological sort problem. The class has the
following basic features:

• record element (e : G)
Include e in the set of elements.

• record constraint (e, f : G)
Include [e, f] in the constraints.

• process
Perform topological sort and make the result available in sorted elements.

• sorted elements : LIST [G]
Sorted list computed by process

We may not assume that the constraints are always consistent. Especially with many con-
straints, cyclic dependencies may occur and the topological sort can not succeed. Instead
of refusing cyclic input, our algorithm should sort as many elements as possible. The items
involved in a cycle are reported at the end. Two more features are introduced for that
matter:

• cycle found : BOOLEAN
Did process find any cyclic dependencies in the constraints?

• cycle list : LIST [G]
List of elements involved in cyclic constraints (if cycle found is true)

3.4 Implementation 47

3.4.3 Storage of elements and constraints

As discussed in [6], the choice of the data structure to store the elements and constraints
has a significant impact on the efficiency of the algorithm. Declaring the attributes as
follows is not the best decision:

elements : LINKED LIST [G]
−− All elements to be sorted

constraints : LINKED LIST [TUPLE [G, G]]
−− Constraints between the elements.

The performance can be significantly improved if we do not store the constraints as
they are given to us. Instead of storing the constraints as pairs of elements, we stay
closer to the algorithm described in section 3.3.1: For every element, we keep track of its
(direct) successors and the number of (direct) predecessors. We have two arrays, one for
the predecessors and one for the successors. What we need is an association between the
elements and the array entries. This is achieved by enumerating the elements according
to the insertion order. Duplicate element insertions are detected, so the element index is
unique for each item. For a fast mapping from element to index, we use a hash table. The
following features are used to store the elements and constraints internally:

feature {NONE } −− Implementation

element of index : ARRAY [G]
−− Elements in insertion order

index of element : HASH TABLE [INTEGER, G]
−− Index of every element

successors : ARRAY [LINKED LIST [INTEGER]]
−− Indexed by element numbers; for each element ‘x’,
−− gives the list of its successors (the elements ‘y’
−− such that there is a constraint ‘[x, y]’)

predecessor count : ARRAY [INTEGER]
−− Indexed by element numbers; for each, says how many
−− predecessors the element has

candidates : DISPENSER [INTEGER]
−− Elements with no predecessor, ready to be released

The candidates are a collection of elements ready to be written into the result list sorted.
There are several strategies to select a candidate. They are described in section 3.4.6.

3.4.4 Contracts

The class TOPOLOGICAL SORTER is designed according to the command-query
separation principle. After all the elements and constraints are recorded, process is called
which makes the result available in sorted elements. It does not make sense to ask for

48 Chapter 3 Topological sort

sorted before process has been called. Neither is it reasonable to call process multiple
times without changing the elements or constraints. The flag done has been introduced
to express that fact. The contract view of the class looks as follows:

class interface
TOPOLOGICAL SORTER [G]

create

make

feature −− Initialization

record constraint (e, f : G)
−− Add the constraint ‘[e, f]’.

require

not sorted : not done
not void : e /= Void and f /= Void

record element (e: G)
−− Add ‘e’ to the set of elements, unless already present.

require

not sorted : not done

feature −− Access

count: INTEGER
−− Number of elements

cycle found: BOOLEAN
−− Did the original constraints imply a cycle?

require

sorted : done

cycle list: LIST [G]
−− Elements involved in cycles

require

sorted : done

sorted elements: LIST [G]
−− List, in an order respecting the constraints, of all
−− the elements that can be ordered in that way

require

sorted : done

feature −− Status report
done: BOOLEAN

−− Has topological sort been performed?

3.4 Implementation 49

feature −− Status setting

reset
−− Allow further updates of the elements and constraints.

ensure

fresh : not done

feature −− Element change

process
−− Perform a topological sort over all applicable elements.
−− Results are accessible through ‘sorted elements’, ‘cycle found’
−− and ‘cycle list’.

require

not sorted : not done
ensure

sorted : done

invariant

elements not void : element of index /= Void
hash table not void : index of element /= Void
predecessor count not void : predecessor count /= Void
successors not void : successors /= Void
candidates not void : candidates /= Void

element count : element of index.count = count
predecessor list count : predecessor count.count = count
successor list count : successors.count = count

cyclists iff cycle : done implies (cycle found = (cycle list /= Void))
all items sorted : (done and then not cycle found) implies (count = sorted.count)
no item forgotten : (done and then cycle found) implies

(count = sorted elements.count + cycle list.count)

end

We can see that sorted elements, cycle found and cycle list have the precondition done.
The current version of Eiffel does not allow attributes to have a precondition, hence we
need three hidden features for the effective storage of the values:

feature {NONE } −− Implementation

has cycle : like cycle found
−− Internal attribute with same value as ‘cycle found’.

cycle list impl : like cycle list
−− Internal attribute with same value as ‘cycle list’.

output : LINKED LIST [G]
−− Internal attribute with same value as ‘sorted elements’.

50 Chapter 3 Topological sort

The next version of Eiffel, specified in Eiffel: The Language 3 [7], will support assertions
for attributes and will make these hidden attributes obsolete.

3.4.5 Performance analysis

The topological sort algorithm takes a set of elements and a set of constraints as input.
We assume that there are n elements and m constraints. To inspect all elements and
constraints, we need at least O(m+n) steps. The exciting result is that the implementation
can keep up the complexity of O(m + n), both in space and time.

Input

record element

There are five steps to do for registering an element x :

• Check if x is already registered. Implemented with a hash table: O(1).

• If it was not already present: add x to elements: O(1).

• Add x to a hash table to associate it with an index: O(1).

• Set predecessor count for x to 0: O(1).

• Create an empty successor list for x : O(1).

Applied to all n elements, we get a complexity of O(n).

record constraint

Adding a new constraint [e, f] consists of three operations:

• Call record element for both e and f to make sure both are part of elements : O(1).

• Increment the predecessor count of f : O(1).

• Add f to the successors of e: O(1).

Since there are m constraints, the complexity for record constraints is O(m). Thus we
can say that the input completes in O(m + n).

Processing

Let us reconsider the topological sort algorithm:

Put all members of elements without predecessor into candidates
while candidates is not empty do

Pick an element x from candidates

Produce x as the next element of sorted elements

Remove all pairs starting with x from constraints

Put all non-processed members of elements without predecessor into candidates

end

3.4 Implementation 51

if elements is not empty then

Report cycle

end

The first line requires the predecessors array to be fully traversed, which takes O(n) time.
Repeating the same operation in each loop iteration would lead to a complexity of at least
O(n2), but the further candidates can be found more efficiently.

The first two statements in the loop are trivial and complete in constant time. The line
“Remove all pairs starting with x from constraints” is more interesting: The successors of
x are not needed anymore. We could set the corresponding entry in successors to void,
but it turns out that the algorithm does not consider these entries anymore, so we can
leave the array it as it is. What we must do when removing all pairs [x, y] is to decrease
the predecessor count of y. At first sight, this seems to lead to O(m ∗ n), but that is not
true. For each constraint, this operation is done at most once in the whole processing. So
the complexity for this operation remains O(m).

The last task remaining for the main loop is to find elements with no predecessor, based
on the new situation. Fortunately, we can combine this step with the last one. At the
same time when decreasing the entry in predecessor count, we can check if the value has
become 0. If so, we put the corresponding element into candidates. The complexity is not
affected by this additional step.

When the main loop terminates, we must check for cyclic constraints. No more than
O(n) steps are required for that. All elements whose number of predecessors is still not
zero could not be sorted and are added to cycle list. Additionally, the flag cycle found is
set. Summarizing all steps of the processing part, we can keep up the overall complexity
of O(m + n).

3.4.6 Parameterizing topological sort

Output strategies for the candidates

The result of a topological sort is a total order on the elements. In general, there are
multiple solutions to the topological sort problem. The output order depends on the set
of candidates, which are the elements with no predecessor. If there is always just one such
candidate, the output order is unambiguous. As soon as there are multiple candidates, we
have free choice of the output order. There are several strategies to pick the next element
for output. The most frequently used of them are:

• Smallest element first

• Largest element first

• FIFO: output order is the same order as the input order

• LIFO: output order is the reverse of the input order

The candidates are declared as a DISPENSER , which is a deferred type. It is the actual
type of candidates which defines the element that is returned by the query item. For
instance, when the actual type of candidates is ARRAYED STACK , the LIFO strategy is
applied. In our implementation, only the FIFO and LIFO strategy could be implemented.

52 Chapter 3 Topological sort

There are two reasons why smallest element first and largest element first could not be
realized:

In section 3.4.3, we saw how the elements are mapped to an index. It is convenient for
the implementation if candidates also holds indices rather than the elements themselves.
When the largest element first strategy is chosen, the query item yields the largest index
stored in candidates. However, the largest index does not necessarily correspond to the
largest element, so this is the first obstacle.

The second reason is more severe: Even if candidates held the elements directly, we
would not be able to get the largest (or smallest) element first. Let us assume that
candidates is declared of type DISPENSER [G]. To use the largest element first strategy,
the actual type of candidates must be a PRIORITY QUEUE. The problem is that the
generic parameter of PRIORITY QUEUE is constrained by COMPARABLE. This means
that the generic parameter G of our class TOPOLOGICAL SORTER must conform to
both HASHABLE and COMPARABLE. Unfortunately, EiffelStudio 5.4 does not support
multiple classes for constrained genericity. The next version of Eiffel, specified in Eiffel:

The Language 3 [7] will support multiple generic constraints. Then it will be possible to
provide further output strategies.

Realization in TOPOLOGICAL SORTER

The default output strategy for unconstrained elements is FIFO. It can be changed by
calling use lifo output and use fifo output respectively. The current output mode is indi-
cated by the flag fifo output. As stated in section 3.4.6, the appropriate output strategy
is achieved by choosing an actual type for candidates at creation time. A class invariant
assures that candidates is never void.

feature −− Status report

fifo output : BOOLEAN
−− Is FIFO strategy used for output of
−− unconstrained elements?

feature −− Status setting

use fifo output : BOOLEAN
−− Use FIFO strategy for output of unconstrained elements.

do

create {LINKED QUEUE [INTEGER]} candidates.make
fifo output := True

ensure

fifo output : fifo output
end

3.4 Implementation 53

use lifo output : BOOLEAN
−− Use LIFO strategy for output of unconstrained elements.

do

create {ARRAYED STACK [INTEGER]} candidates.make (1)
fifo output := False

ensure

lifo output : not fifo output
end

feature {NONE } −− Implementation

candidates : DISPENSER [INTEGER]
−− Elements with no predecessor, ready to be released

invariant

candidates not void : candidates /= Void

Chapter 4

Union-find

4.1 Introduction

A union-find data structure is needed in the following situation: we have n disjoint elements
and a number of sets between 1 and n. Every element is part of exactly one of those sets.
This implies that all sets are disjoint. For these sets, we want to have the following
operations:

• Fast lookup, to which set a given element belongs

• Efficient merging of two sets

Maybe the most famous application of the union-find data structure are graph algorithms.
J.B. Kruskal has proposed an algorithm to find the minimum spanning tree for undirected
graphs [2]. The graph library described in chapter 1 can benefit in two ways from a
union-find data structure: besides computing the minimum spanning tree, we have also
an elegant way to count the number of graph components.

The implementation we made for EiffelBase is generic, powerful and efficient. The
operations on the union-find structure obey by nature the command-query separation
principle. This allows us to make an elegant mapping into an Eiffel class.

4.2 Representation of the sets

We need a way to represent the sets internally to optimize the efficiency of the basic
operations union and find. The basic idea is to represent each set as a tree-like structure.
The tree nodes correspond to the set elements, but there exists no specific item order.
The particularity is that the tree is “inverted”: every node knows its parent, but not its
children.

It is inconvenient to pass whole sets as arguments to the union-find routines. We need
a way to identify the different sets with some kind of label. Since the sets are finite, there
exists exactly one root element for each tree. In addition, the sets are disjoint, no element
is part of multiple sets. Thus, we can use the root element as an identifier for the whole
set. The root element has no special property; any set element can be the root node.
Figure 4.1 shows an example with four sets and 18 elements in total.

56 Chapter 4 Union-find

h

e

c

g f

p d z

m u

b n w

r

Set

i

k x

a k

x Set member

ii Set identifier

Figure 4.1: Internal representation of the sets using a tree structure

4.3 Algorithms

4.3.1 find

To find out to which set a specific item belongs, the tree structure is traversed up to the
root. For instance, if we want to find the set containing x in figure 4.1, we traverse the
corresponding tree up to the root, which is node c. By definition, the root node is set
identifier and therefore the result.

The worst-case scenario we can get is one single tree, degenerated to a linear list. In
that case, we must perform O(n) steps to get the set identifier. That performance is not
a good enough as final result. We could as well have used a linked list instead of a tree.
There is a possibility to optimize the find operation significantly: on our way up to the
root, we encounter multiple elements. Of course, all of them belong to the same set as
x. At the end of the find operation, we can attach all those elements directly to the root
node by modifying their parent pointer. In any future call to find for one of those items,
the root node is reached in only one step. Figure 4.2 shows the reorganization of the tree
structure after calling find (x):

k

c

g f

p

d

z

x

c

g f

p d z

k x

Let of , andparent f d x

point to the root node

Figure 4.2: Element rearrangement to optimize future find queries

It can be shown that the trees produced by this strategy have an average height
h ≤ log2(n), where n is the number of tree elements. Every invocation of find opti-

4.4 Implementation in Eiffel 57

mizes the tree structure. Because of the average tree height, we can achieve an overall
complexity of O(log(n)). Because of our optimization step, the more often find is called,
the more efficient the query gets (up to O(1) in the best case).

4.3.2 union

When building the union of two sets, we want to avoid moving all members individually
from one set into the other one. Additionally, we want to keep up the high efficiency of
find we have achieved by optimizing the tree structure of both sets.

In our tree structure, all set members are directly or indirectly attached to the root
node. To merge two sets, it is sufficient to make the root node of one tree parent of the
other root node. The nice effect is that all other set elements will follow automatically. All
elements of both sets are now unified in the same tree and are identified by the common
root node. Figure 4.3 shows the tree structure after calling union (h, u):

h

e

m u

b n w

r

a k

k

c

g f

p

d

z

x

Figure 4.3: Tree structure after calling union (h, u)

Only one parent pointer must be updated to unify the two sets. It is not even necessary
to search for the root nodes because they are the set identifiers and are therefore passed
as arguments to the union command. The complexity of the union operation is only O(1).

In average, both trees had at most logarithmic height before the union. The height of
the resulting tree will be at most one more than the maximum of both heights. It is easy to
see that the tree height remains as low as possible when the taller tree remains unchanged
and the other tree is attached to its root node. Because we have no child pointers, it is not
so easy to compute the height of our trees. It is easier to keep track of the number of tree
elements. We have seen that there is a direct correlation between the number of elements
and the tree height. Hence we use the number of tree elements to determine which tree is
attached to the other.

4.4 Implementation in Eiffel

4.4.1 Class design

The class UNION FIND STRUCTURE holds the tree representation of the sets and pro-
vides all necessary operations. The set elements can be of an arbitrary type and lead

58 Chapter 4 Union-find

to the generic parameter G. For efficiency reasons, we make use of a hash table. G is
therefore constrained by HASHABLE.

In section 4.3, we have seen that the root element is used as set identifier. To avoid
confusion between the set identifiers and the elements, we have decided to use INTEGER
numbers to identify the sets. This goes well in-line with the implementation, as internally
the trees consist of INTEGER elements (see also section 4.4.2).

The main features provided in UNION FIND STRUCTURE are:

• put (e : G)
Put e into a unary set and add it to the union-find structure

• find (e : G): INTEGER
Find the set to which e belongs

• union (s, t : INTEGER)
Merge the sets s and t

• count : INTEGER
Number of registered elements

• set count : INTEGER
Number of sets

4.4.2 Internal representation using arrays

Although the pictures from section 4.3 may suggest to use a tree implementation, we choose
another internal representation. All elements have only a pointer up to their parent. We
do not need to know the children of a node, as it is the case in the Eiffel tree structures.
A very efficient implementation can be made when operating with arrays.

Internally, it is not convenient to work with objects of type G. Instead, we map every
element to a unique integer value. When a new element is added, it is inserted into the
hash table index of element and gets mapped to the current value of count. The same
item can only be added once to the whole structure, repeated insertions are ignored.

Now that we have an integer representation of the set elements, it is easy to get an
INTEGER identifier denoting the whole set. Instead of using the root element as set
identifier, we take the root index. Since all elements have different numbers, there cannot
be a name clash.

In figure 4.4 on the facing page, we can see how the tree structure is represented in-
ternally. All elements are stored in an array elements. The hash table index of element
contains the inverse mapping from an element to its array index. The third array parent
is used to represent the tree structure. The indices are the same than those of elements;
the array holds the parent index for each tree node. The inner nodes of the example tree
in figure 4.4 are highlighted to give more clearness, how the parent array is used. We can
eliminate some special cases if every element has an entry in parent . That is the reason
why the root node has a the self-reference.

4.4 Implementation in Eiffel 59

k

c

g f

p

d

z

x

c fdxzg p k

1 3 245 6 8 7

index_of_element

elements

1 2 3 4 5 6 7 8

c fdxz gp k

parent

1 2 3 4 5 6 7 8

2 2 2 22 67 7

4

2

5 7 6

81 3

Tree structure with elements Tree structure with integers

Figure 4.4: Internal representation of the tree structure with arrays

4.4.3 find

find (x) returns the identifier of the set containing x. The tree structure is traversed up
to the root by following the entries of parent . If the root node points to itself in parent,
we do not have to care whether an element has a parent or not. The following code shows
how the set identifier is determined:

find (e : G): INTEGER is

−− Identifier of set containing ‘e’
require

has element: has (e)
local

index : INTEGER
do

−− Traverse the ”tree” upwards to get the root index.
from

index := index of element.item (e)
until

−− The ”root” set number is found when the value is equal to its index.
parent.item (index) = index

loop

−− Get the parent set number until the ”root” set number is found.
index := parent.item (index)

60 Chapter 4 Union-find

end

Result := index
end

Note that the above code is used only as an illustration how the tree is traversed. The
real implementation of the find routine has more contracts and contains the optimization
mentioned in section 4.3.1.

4.4.4 union

The union operation takes two set identifiers and merges the corresponding sets. The
merging step is particularly easy to implement. We only need to attach one of the root
nodes to the other one.

There are still some considerations to do for the implementation. First, we must make
sure that both arguments are valid set identifiers. The query valid identifier is required
to be true for both arguments. An identifier is only valid if it denotes a root element.
Second, we must decide which set is kept and which is made part of the other. In section
4.3.2, we have seen that the answer is attach the root of the smaller set to the root of
the larger set. The feature items in set takes a set identifier as argument and returns the
appropriate set size. It is not computed, but stored in the array elements in set . Then,
the union operation consists of two steps:

1. Replacing the larger set size in elements in set by the sum of both set sizes.

2. Changing the appropriate entry in parent , such that the root of the smaller set
points to the other root node.

4.4.5 Further routines

Since we are writing a library class, we provide some additional features to make the
implementation more powerful.

valid indices

The straightforward approach to get all set identifiers is to iterate over all possible set
identifiers from 1 to count and to check whether the corresponding element is a root
element. We keep an internal list for the valid set identifiers, which is even more efficient.

i th set

Sometimes, we want to have the inverse operation of find . Having a valid set identifier,
we want to know which elements belong to that specific set. Obviously, the internal
representation using the parent array is not suited to answer that question. Of course,
we could replace the internal representation by a full-featured tree data structure, but
probably a lot of our great efficiency would get lost. Let us keep in mind that this is just
an additional feature provided for convenience, not a core component of the union-find
data structure.

The basic idea is to have a linked list of all elements belonging to the same set. The
element order is absolutely irrelevant. When two sets are merged with the union command,

4.5 Difficulties in the design of UNION FIND STRUCTURE 61

one list is simply appended to the other. We must make sure that these additional steps
have the least possible impact on the performance of union and find. Therefore, we do
not use the linked lists provided in EiffelBase, but use an array representation similar to
the parent array. Our “lists” can be merged in O(1); there is no noticeable impact on the
speed of the other operations.

sets

From the two features identifiers, which returns all set identifiers, and i th set, we can
derive another feature: sets returns a collection of all sets that are currently stored in our
union-find structure. This operation is used rather rarely and has mainly been provided
for completeness.

4.5 Difficulties in the design of UNION FIND STRUCTURE

The most difficult part of the class design was the choice of the feature names. The reason
for the problems is the equivalence of the noun set and the verb to set. For instance, the
query set count which returns the number of sets could be misunderstood as command
to set the value of count. We could not find a better feature name, so the final version of
the class contains that name nevertheless.

Chapter 5

Assessment and future work

5.1 Summary

5.1.1 Thesis overview

The EiffelBase library is extended in several areas not yet covered. There is now a powerful
graph library, an implementation of balanced trees with B-trees, topological sort and a
union-find data structure. The reusability of the components appears even at the library
level: The union-find structure is used in the graph library to compute the number of
components and the minimum spanning tree. After a conversion to the correct data
types, it is even possible to get a topological sort of directed acyclic graphs.

5.1.2 Graph library

Taking the graph library proposed by Bernd Schoeller as a starting point, a graph library
has been developed. Contrary to the initial solution, not every graph concept is encapsu-
lated in a new class. The final class hierarchy consists of only four deferred graph classes.
In addition, there is an edge type accessible to the user.

There are two different implementations. The first one is based on an adjacency matrix
and it is very fast, but there is no support for multigraphs. The second one uses a linked
structure for the incident edges of each node. That implementation is suited for all needs,
but it not exactly as fast as the adjacency matrix variant.

A couple of graph algorithms are implemented. You can compute the number of graph
components, determine whether a graph contains cycles and check if it is Eulerian. Addi-
tionally, you can compute the shortest path and the minimum spanning tree.

5.1.3 B-trees

The tree cluster is extended by a modern form of trees: B-trees. They are part of the
family of balanced search trees. To avoid the worst case of degenerating to a linear list,
the nodes are self-organizing and are balanced after insertion and removal operations if
necessary.

B-tree nodes contain multiple elements and multiple children references. The tree be-
comes very broad, but remains particularly flat. With that design, the smallest amount
of tree nodes must be inspected to search for an element. This is a big advantage when
parts of the tree are swapped to the hard disk which has very high access times.

The deferred class BALANCED SEARCH TREE has been integrated in the class hi-
erarchy. It provides a generic interface for balanced search trees and allows future imple-
mentations of other balanced trees, like AVL-trees or splay trees.

64 Chapter 5 Assessment and future work

The implementation phase has uncovered some deficiencies in the existing tree cluster.
A class invariant in class TREE is wrong (see section 2.4.1) and the implementation of
sorted in binary search trees contains errors (section 2.4.4).

5.1.4 Topological sort

With topological sort, a total order can be found for elements with only a partial order.
The implementation is very flexible: if no such order exists, as many items as possible are
sorted, the other elements are reported to by part of a cycle. The class is well designed
according to the command-query separation principle and the implementation is very
efficient.

5.2 Future work

5.2.1 Improving the graph library

Data structure

A lot of time has been invested in the design phase of the graph library. The class hierarchy
is compact, but very powerful. The two implementations are suited for many applications,
but there are still some facilities to be added.

The class ADJACENCY MATRIX GRAPH currently supports only simple graphs. In
a future version, the adjacency matrix could consist of edge lists instead of single edges.
Alternatively, a whole new implementation could be made with respect to multigraphs.

It is even arguable whether the use of a whole adjacency matrix is a good design at all.
The matrix grows to the square of the node amount; in many cases it contains only few
edges compared to its size. Maybe another representation can be found, where only the
effective adjacency relations are stored. A possibility could be to make use of hash tables
to reduce the waste of memory space.

The initial design of the LINKED GRAPH implementation proposed by Bernd Schoeller
used a linked list to store the nodes. For the current version, that list was replaced by
a hash table which brought a significant performance boost. There might be other opti-
mizations to be uncovered to make that implementation even more efficient and elegant.

Algorithms

The current version of the graph library supports the commonly used graph algorithms:
cycle detection, shortest path and the minimum spanning tree. There exist many further
graph algorithms which could be added as an extension:

• Find the clique of a graph

• Compute the independent set

• Determine n-connectedness of components

• Test for isomorphism

5.2 Future work 65

5.2.2 Topological sort

The topological sort implementation is very elegant, robust and efficient. Only two output
strategies for unconstrained elements could be implemented so far. When the next version
of Eiffel [7] is available, the strategies first-in-first-out and last-in-last-out should be added
to provide even more flexibility.

5.2.3 Balanced trees

The B-trees we have implemented are part of the category of balanced trees. To reflect that
fact, the class BALANCED SEARCH TREE has been introduced as an intermediate class
between the generic TREE class and the B TREE implementation. The class provides
an interface for future implementations of other balanced trees. The tree cluster could be
extended by AVL-trees or splay trees.

Acknowledgments

I would like to thank my supervisor Dr. Karine Arnout for her helpful feedback and
reviews of my report. Further, I want to thank Prof. Dr. Bertrand Meyer for giving me
the opportunity to do this master thesis in his group. Special thanks go to Beat Fluri and
Rolf Bruderer for their valuable ideas and support in many situations. I am particularly
grateful to my parents for always supporting me at the best during my studies.

References

[1] Bernd Schoeller. Graph library for Eiffel.
http://se.inf.ethz.ch/people/schoeller/index.html

[2] J.B. Kruskal. On the Shortest Spanning Subtree of a Graph and the travelling Salesman

Problem.
Proc. AMS 7, 1956

[3] ISE EiffelStudio 5.4
http://www.eiffel.com

[4] Graphviz - graph drawing tools.
AT&T labs
Available from http://www.graphviz.org

[5] D.E. Knuth. The Art of Computer Programming, Vol.3: Sorting and Searching.

Addison-Wesley, Reading, Massachusetts, 1973

[6] Bertrand Meyer. Touch of Class. Learning to program well with Object Technology and

Design by Contract (in preparation).
Prentice Hall PTR.

Available from http://www.inf.ethz.ch/personal/meyer/down/touch.
Accessed August 2004

[7] Bertrand Meyer: Eiffel: The Language, Third edition (in preparation).
Prentice Hall PTR.
Available from http://www.inf.ethz.ch/personal/meyer/#Progress.
Accessed September 2004

[8] Bertrand Meyer. Object-Oriented Software Construction.

Prentice Hall PTR, 2nd edition, 1997

[9] T. Ottmann, P. Widmayer. Algorithmen und Datenstrukturen.
Spektrum Akademischer Verlag, 3rd edition, 1996

http://se.inf.ethz.ch/people/schoeller/index.html
http://www.eiffel.com
http://www.graphviz.org
http://www.inf.ethz.ch/personal/meyer/down/touch
http://www.inf.ethz.ch/personal/meyer/#Progress

	Introduction
	1 Graph library
	1.1 Motivation for a graph library
	1.2 Graph theory
	1.2.1 Simple graphs and multigraphs
	1.2.2 Undirected, directed and symmetric graphs
	1.2.3 Weighted graphs
	1.2.4 Paths and cycles
	1.2.5 Connectedness, components and reachability
	1.2.6 (Minimum) spanning trees

	1.3 Bernd Schoeller's solution
	1.3.1 Overview
	1.3.2 Representation of nodes and edges
	1.3.3 Cursors and traversal
	1.3.4 Implementation 1: [identifierstyle=identcolor]/ARRAYMATRIXGRAPH/
	1.3.5 Implementation 2: [identifierstyle=identcolor]/LINKEDGRAPH/

	1.4 Final design of the graph library
	1.4.1 Overview
	1.4.2 Graph nodes
	1.4.3 Edges
	1.4.4 Weighted edges
	1.4.5 Graph cursors and traversal
	1.4.6 Implemented graph algorithms

	1.5 Limitations
	1.6 Problems related to Eiffel and EiffelStudio
	1.6.1 [identifierstyle=identcolor]/WEIGHTEDEDGE/ cannot inherit from [identifierstyle=identcolor]/COMPARABLE/
	1.6.2 Non-deterministic precursor
	1.6.3 Technical problems in EiffelStudio 5.4

	1.7 User guide
	1.7.1 Introduction
	1.7.2 Choice of the graph class
	1.7.3 Basic operations
	1.7.4 Directed and symmetric graphs
	1.7.5 Weighted graphs
	1.7.6 Advanced use of weighted graphs
	1.7.7 Graph algorithms
	1.7.8 Visualizing the graph

	2 B-trees
	2.1 Introduction
	2.2 Theoretical view
	2.2.1 Motivation
	2.2.2 General properties
	2.2.3 Basic operations

	2.3 Implementation
	2.3.1 Fitting B-trees into the tree cluster
	2.3.2 [identifierstyle=identcolor]/BALANCEDTREE/ features
	2.3.3 Implementation of class [identifierstyle=identcolor]/BTREE/

	2.4 Limitations and problems with existing tree classes
	2.4.1 Class invariant from class [identifierstyle=identcolor]/TREE/ produces contract violation
	2.4.2 Incompleteness of binary search tree operations
	2.4.3 Vulnerability of binary search trees
	2.4.4 Wrong implementation of [identifierstyle=identcolor]/sorted/ in binary search trees
	2.4.5 Unusual [identifierstyle=identcolor]/linearrepresentation/ of binary search trees

	3 Topological sort
	3.1 Introduction
	3.2 Mathematical formulation
	3.3 Algorithm
	3.3.1 Overall form
	3.3.2 Handling cyclic constraints
	3.3.3 Overlapping windows example

	3.4 Implementation
	3.4.1 Motivation for an object-oriented approach
	3.4.2 Class design: [identifierstyle=identcolor]/TOPOLOGICALSORTER/
	3.4.3 Storage of elements and constraints
	3.4.4 Contracts
	3.4.5 Performance analysis
	3.4.6 Parameterizing topological sort

	4 Union-find
	4.1 Introduction
	4.2 Representation of the sets
	4.3 Algorithms
	4.3.1 [identifierstyle=identcolor]/find/
	4.3.2 [identifierstyle=identcolor]/union/

	4.4 Implementation in Eiffel
	4.4.1 Class design
	4.4.2 Internal representation using arrays
	4.4.3 [identifierstyle=identcolor]/find/
	4.4.4 [identifierstyle=identcolor]/union/
	4.4.5 Further routines

	4.5 Difficulties in the design of [identifierstyle=identcolor]/UNIONFINDSTRUCTURE/

	5 Assessment and future work
	5.1 Summary
	5.1.1 Thesis overview
	5.1.2 Graph library
	5.1.3 B-trees
	5.1.4 Topological sort

	5.2 Future work
	5.2.1 Improving the graph library
	5.2.2 Topological sort
	5.2.3 Balanced trees

	References

