libstdc++
stl_deque.h
Go to the documentation of this file.
00001 // Deque implementation -*- C++ -*-
00002 
00003 // Copyright (C) 2001-2014 Free Software Foundation, Inc.
00004 //
00005 // This file is part of the GNU ISO C++ Library.  This library is free
00006 // software; you can redistribute it and/or modify it under the
00007 // terms of the GNU General Public License as published by the
00008 // Free Software Foundation; either version 3, or (at your option)
00009 // any later version.
00010 
00011 // This library is distributed in the hope that it will be useful,
00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of
00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00014 // GNU General Public License for more details.
00015 
00016 // Under Section 7 of GPL version 3, you are granted additional
00017 // permissions described in the GCC Runtime Library Exception, version
00018 // 3.1, as published by the Free Software Foundation.
00019 
00020 // You should have received a copy of the GNU General Public License and
00021 // a copy of the GCC Runtime Library Exception along with this program;
00022 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
00023 // <http://www.gnu.org/licenses/>.
00024 
00025 /*
00026  *
00027  * Copyright (c) 1994
00028  * Hewlett-Packard Company
00029  *
00030  * Permission to use, copy, modify, distribute and sell this software
00031  * and its documentation for any purpose is hereby granted without fee,
00032  * provided that the above copyright notice appear in all copies and
00033  * that both that copyright notice and this permission notice appear
00034  * in supporting documentation.  Hewlett-Packard Company makes no
00035  * representations about the suitability of this software for any
00036  * purpose.  It is provided "as is" without express or implied warranty.
00037  *
00038  *
00039  * Copyright (c) 1997
00040  * Silicon Graphics Computer Systems, Inc.
00041  *
00042  * Permission to use, copy, modify, distribute and sell this software
00043  * and its documentation for any purpose is hereby granted without fee,
00044  * provided that the above copyright notice appear in all copies and
00045  * that both that copyright notice and this permission notice appear
00046  * in supporting documentation.  Silicon Graphics makes no
00047  * representations about the suitability of this software for any
00048  * purpose.  It is provided "as is" without express or implied warranty.
00049  */
00050 
00051 /** @file bits/stl_deque.h
00052  *  This is an internal header file, included by other library headers.
00053  *  Do not attempt to use it directly. @headername{deque}
00054  */
00055 
00056 #ifndef _STL_DEQUE_H
00057 #define _STL_DEQUE_H 1
00058 
00059 #include <bits/concept_check.h>
00060 #include <bits/stl_iterator_base_types.h>
00061 #include <bits/stl_iterator_base_funcs.h>
00062 #if __cplusplus >= 201103L
00063 #include <initializer_list>
00064 #endif
00065 
00066 namespace std _GLIBCXX_VISIBILITY(default)
00067 {
00068 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
00069 
00070   /**
00071    *  @brief This function controls the size of memory nodes.
00072    *  @param  __size  The size of an element.
00073    *  @return   The number (not byte size) of elements per node.
00074    *
00075    *  This function started off as a compiler kludge from SGI, but
00076    *  seems to be a useful wrapper around a repeated constant
00077    *  expression.  The @b 512 is tunable (and no other code needs to
00078    *  change), but no investigation has been done since inheriting the
00079    *  SGI code.  Touch _GLIBCXX_DEQUE_BUF_SIZE only if you know what
00080    *  you are doing, however: changing it breaks the binary
00081    *  compatibility!!
00082   */
00083 
00084 #ifndef _GLIBCXX_DEQUE_BUF_SIZE
00085 #define _GLIBCXX_DEQUE_BUF_SIZE 512
00086 #endif
00087 
00088   inline size_t
00089   __deque_buf_size(size_t __size)
00090   { return (__size < _GLIBCXX_DEQUE_BUF_SIZE
00091         ? size_t(_GLIBCXX_DEQUE_BUF_SIZE / __size) : size_t(1)); }
00092 
00093 
00094   /**
00095    *  @brief A deque::iterator.
00096    *
00097    *  Quite a bit of intelligence here.  Much of the functionality of
00098    *  deque is actually passed off to this class.  A deque holds two
00099    *  of these internally, marking its valid range.  Access to
00100    *  elements is done as offsets of either of those two, relying on
00101    *  operator overloading in this class.
00102    *
00103    *  All the functions are op overloads except for _M_set_node.
00104   */
00105   template<typename _Tp, typename _Ref, typename _Ptr>
00106     struct _Deque_iterator
00107     {
00108       typedef _Deque_iterator<_Tp, _Tp&, _Tp*>             iterator;
00109       typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
00110 
00111       static size_t _S_buffer_size() _GLIBCXX_NOEXCEPT
00112       { return __deque_buf_size(sizeof(_Tp)); }
00113 
00114       typedef std::random_access_iterator_tag iterator_category;
00115       typedef _Tp                             value_type;
00116       typedef _Ptr                            pointer;
00117       typedef _Ref                            reference;
00118       typedef size_t                          size_type;
00119       typedef ptrdiff_t                       difference_type;
00120       typedef _Tp**                           _Map_pointer;
00121       typedef _Deque_iterator                 _Self;
00122 
00123       _Tp* _M_cur;
00124       _Tp* _M_first;
00125       _Tp* _M_last;
00126       _Map_pointer _M_node;
00127 
00128       _Deque_iterator(_Tp* __x, _Map_pointer __y) _GLIBCXX_NOEXCEPT
00129       : _M_cur(__x), _M_first(*__y),
00130         _M_last(*__y + _S_buffer_size()), _M_node(__y) { }
00131 
00132       _Deque_iterator() _GLIBCXX_NOEXCEPT
00133       : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) { }
00134 
00135       _Deque_iterator(const iterator& __x) _GLIBCXX_NOEXCEPT
00136       : _M_cur(__x._M_cur), _M_first(__x._M_first),
00137         _M_last(__x._M_last), _M_node(__x._M_node) { }
00138 
00139       iterator
00140       _M_const_cast() const _GLIBCXX_NOEXCEPT
00141       { return iterator(_M_cur, _M_node); }
00142 
00143       reference
00144       operator*() const _GLIBCXX_NOEXCEPT
00145       { return *_M_cur; }
00146 
00147       pointer
00148       operator->() const _GLIBCXX_NOEXCEPT
00149       { return _M_cur; }
00150 
00151       _Self&
00152       operator++() _GLIBCXX_NOEXCEPT
00153       {
00154     ++_M_cur;
00155     if (_M_cur == _M_last)
00156       {
00157         _M_set_node(_M_node + 1);
00158         _M_cur = _M_first;
00159       }
00160     return *this;
00161       }
00162 
00163       _Self
00164       operator++(int) _GLIBCXX_NOEXCEPT
00165       {
00166     _Self __tmp = *this;
00167     ++*this;
00168     return __tmp;
00169       }
00170 
00171       _Self&
00172       operator--() _GLIBCXX_NOEXCEPT
00173       {
00174     if (_M_cur == _M_first)
00175       {
00176         _M_set_node(_M_node - 1);
00177         _M_cur = _M_last;
00178       }
00179     --_M_cur;
00180     return *this;
00181       }
00182 
00183       _Self
00184       operator--(int) _GLIBCXX_NOEXCEPT
00185       {
00186     _Self __tmp = *this;
00187     --*this;
00188     return __tmp;
00189       }
00190 
00191       _Self&
00192       operator+=(difference_type __n) _GLIBCXX_NOEXCEPT
00193       {
00194     const difference_type __offset = __n + (_M_cur - _M_first);
00195     if (__offset >= 0 && __offset < difference_type(_S_buffer_size()))
00196       _M_cur += __n;
00197     else
00198       {
00199         const difference_type __node_offset =
00200           __offset > 0 ? __offset / difference_type(_S_buffer_size())
00201                        : -difference_type((-__offset - 1)
00202                           / _S_buffer_size()) - 1;
00203         _M_set_node(_M_node + __node_offset);
00204         _M_cur = _M_first + (__offset - __node_offset
00205                  * difference_type(_S_buffer_size()));
00206       }
00207     return *this;
00208       }
00209 
00210       _Self
00211       operator+(difference_type __n) const _GLIBCXX_NOEXCEPT
00212       {
00213     _Self __tmp = *this;
00214     return __tmp += __n;
00215       }
00216 
00217       _Self&
00218       operator-=(difference_type __n) _GLIBCXX_NOEXCEPT
00219       { return *this += -__n; }
00220 
00221       _Self
00222       operator-(difference_type __n) const _GLIBCXX_NOEXCEPT
00223       {
00224     _Self __tmp = *this;
00225     return __tmp -= __n;
00226       }
00227 
00228       reference
00229       operator[](difference_type __n) const _GLIBCXX_NOEXCEPT
00230       { return *(*this + __n); }
00231 
00232       /** 
00233        *  Prepares to traverse new_node.  Sets everything except
00234        *  _M_cur, which should therefore be set by the caller
00235        *  immediately afterwards, based on _M_first and _M_last.
00236        */
00237       void
00238       _M_set_node(_Map_pointer __new_node) _GLIBCXX_NOEXCEPT
00239       {
00240     _M_node = __new_node;
00241     _M_first = *__new_node;
00242     _M_last = _M_first + difference_type(_S_buffer_size());
00243       }
00244     };
00245 
00246   // Note: we also provide overloads whose operands are of the same type in
00247   // order to avoid ambiguous overload resolution when std::rel_ops operators
00248   // are in scope (for additional details, see libstdc++/3628)
00249   template<typename _Tp, typename _Ref, typename _Ptr>
00250     inline bool
00251     operator==(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
00252            const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
00253     { return __x._M_cur == __y._M_cur; }
00254 
00255   template<typename _Tp, typename _RefL, typename _PtrL,
00256        typename _RefR, typename _PtrR>
00257     inline bool
00258     operator==(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
00259            const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
00260     { return __x._M_cur == __y._M_cur; }
00261 
00262   template<typename _Tp, typename _Ref, typename _Ptr>
00263     inline bool
00264     operator!=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
00265            const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
00266     { return !(__x == __y); }
00267 
00268   template<typename _Tp, typename _RefL, typename _PtrL,
00269        typename _RefR, typename _PtrR>
00270     inline bool
00271     operator!=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
00272            const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
00273     { return !(__x == __y); }
00274 
00275   template<typename _Tp, typename _Ref, typename _Ptr>
00276     inline bool
00277     operator<(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
00278           const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
00279     { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
00280                                           : (__x._M_node < __y._M_node); }
00281 
00282   template<typename _Tp, typename _RefL, typename _PtrL,
00283        typename _RefR, typename _PtrR>
00284     inline bool
00285     operator<(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
00286           const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
00287     { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
00288                                       : (__x._M_node < __y._M_node); }
00289 
00290   template<typename _Tp, typename _Ref, typename _Ptr>
00291     inline bool
00292     operator>(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
00293           const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
00294     { return __y < __x; }
00295 
00296   template<typename _Tp, typename _RefL, typename _PtrL,
00297        typename _RefR, typename _PtrR>
00298     inline bool
00299     operator>(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
00300           const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
00301     { return __y < __x; }
00302 
00303   template<typename _Tp, typename _Ref, typename _Ptr>
00304     inline bool
00305     operator<=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
00306            const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
00307     { return !(__y < __x); }
00308 
00309   template<typename _Tp, typename _RefL, typename _PtrL,
00310        typename _RefR, typename _PtrR>
00311     inline bool
00312     operator<=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
00313            const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
00314     { return !(__y < __x); }
00315 
00316   template<typename _Tp, typename _Ref, typename _Ptr>
00317     inline bool
00318     operator>=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
00319            const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
00320     { return !(__x < __y); }
00321 
00322   template<typename _Tp, typename _RefL, typename _PtrL,
00323        typename _RefR, typename _PtrR>
00324     inline bool
00325     operator>=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
00326            const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
00327     { return !(__x < __y); }
00328 
00329   // _GLIBCXX_RESOLVE_LIB_DEFECTS
00330   // According to the resolution of DR179 not only the various comparison
00331   // operators but also operator- must accept mixed iterator/const_iterator
00332   // parameters.
00333   template<typename _Tp, typename _Ref, typename _Ptr>
00334     inline typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type
00335     operator-(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
00336           const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
00337     {
00338       return typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type
00339     (_Deque_iterator<_Tp, _Ref, _Ptr>::_S_buffer_size())
00340     * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
00341     + (__y._M_last - __y._M_cur);
00342     }
00343 
00344   template<typename _Tp, typename _RefL, typename _PtrL,
00345        typename _RefR, typename _PtrR>
00346     inline typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
00347     operator-(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
00348           const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
00349     {
00350       return typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
00351     (_Deque_iterator<_Tp, _RefL, _PtrL>::_S_buffer_size())
00352     * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
00353     + (__y._M_last - __y._M_cur);
00354     }
00355 
00356   template<typename _Tp, typename _Ref, typename _Ptr>
00357     inline _Deque_iterator<_Tp, _Ref, _Ptr>
00358     operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x)
00359     _GLIBCXX_NOEXCEPT
00360     { return __x + __n; }
00361 
00362   template<typename _Tp>
00363     void
00364     fill(const _Deque_iterator<_Tp, _Tp&, _Tp*>&,
00365      const _Deque_iterator<_Tp, _Tp&, _Tp*>&, const _Tp&);
00366 
00367   template<typename _Tp>
00368     _Deque_iterator<_Tp, _Tp&, _Tp*>
00369     copy(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
00370      _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
00371      _Deque_iterator<_Tp, _Tp&, _Tp*>);
00372 
00373   template<typename _Tp>
00374     inline _Deque_iterator<_Tp, _Tp&, _Tp*>
00375     copy(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
00376      _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
00377      _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
00378     { return std::copy(_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__first),
00379                _Deque_iterator<_Tp, const _Tp&, const _Tp*>(__last),
00380                __result); }
00381 
00382   template<typename _Tp>
00383     _Deque_iterator<_Tp, _Tp&, _Tp*>
00384     copy_backward(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
00385           _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
00386           _Deque_iterator<_Tp, _Tp&, _Tp*>);
00387 
00388   template<typename _Tp>
00389     inline _Deque_iterator<_Tp, _Tp&, _Tp*>
00390     copy_backward(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
00391           _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
00392           _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
00393     { return std::copy_backward(_Deque_iterator<_Tp,
00394                 const _Tp&, const _Tp*>(__first),
00395                 _Deque_iterator<_Tp,
00396                 const _Tp&, const _Tp*>(__last),
00397                 __result); }
00398 
00399 #if __cplusplus >= 201103L
00400   template<typename _Tp>
00401     _Deque_iterator<_Tp, _Tp&, _Tp*>
00402     move(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
00403      _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
00404      _Deque_iterator<_Tp, _Tp&, _Tp*>);
00405 
00406   template<typename _Tp>
00407     inline _Deque_iterator<_Tp, _Tp&, _Tp*>
00408     move(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
00409      _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
00410      _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
00411     { return std::move(_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__first),
00412                _Deque_iterator<_Tp, const _Tp&, const _Tp*>(__last),
00413                __result); }
00414 
00415   template<typename _Tp>
00416     _Deque_iterator<_Tp, _Tp&, _Tp*>
00417     move_backward(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
00418           _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
00419           _Deque_iterator<_Tp, _Tp&, _Tp*>);
00420 
00421   template<typename _Tp>
00422     inline _Deque_iterator<_Tp, _Tp&, _Tp*>
00423     move_backward(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
00424           _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
00425           _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
00426     { return std::move_backward(_Deque_iterator<_Tp,
00427                 const _Tp&, const _Tp*>(__first),
00428                 _Deque_iterator<_Tp,
00429                 const _Tp&, const _Tp*>(__last),
00430                 __result); }
00431 #endif
00432 
00433   /**
00434    *  Deque base class.  This class provides the unified face for %deque's
00435    *  allocation.  This class's constructor and destructor allocate and
00436    *  deallocate (but do not initialize) storage.  This makes %exception
00437    *  safety easier.
00438    *
00439    *  Nothing in this class ever constructs or destroys an actual Tp element.
00440    *  (Deque handles that itself.)  Only/All memory management is performed
00441    *  here.
00442   */
00443   template<typename _Tp, typename _Alloc>
00444     class _Deque_base
00445     {
00446     public:
00447       typedef _Alloc                  allocator_type;
00448 
00449       allocator_type
00450       get_allocator() const _GLIBCXX_NOEXCEPT
00451       { return allocator_type(_M_get_Tp_allocator()); }
00452 
00453       typedef _Deque_iterator<_Tp, _Tp&, _Tp*>             iterator;
00454       typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
00455 
00456       _Deque_base()
00457       : _M_impl()
00458       { _M_initialize_map(0); }
00459 
00460       _Deque_base(size_t __num_elements)
00461       : _M_impl()
00462       { _M_initialize_map(__num_elements); }
00463 
00464       _Deque_base(const allocator_type& __a, size_t __num_elements)
00465       : _M_impl(__a)
00466       { _M_initialize_map(__num_elements); }
00467 
00468       _Deque_base(const allocator_type& __a)
00469       : _M_impl(__a)
00470       { }
00471 
00472 #if __cplusplus >= 201103L
00473       _Deque_base(_Deque_base&& __x)
00474       : _M_impl(std::move(__x._M_get_Tp_allocator()))
00475       {
00476     _M_initialize_map(0);
00477     if (__x._M_impl._M_map)
00478       {
00479         std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
00480         std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
00481         std::swap(this->_M_impl._M_map, __x._M_impl._M_map);
00482         std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size);
00483       }
00484       }
00485 #endif
00486 
00487       ~_Deque_base() _GLIBCXX_NOEXCEPT;
00488 
00489     protected:
00490       typedef typename _Alloc::template rebind<_Tp*>::other _Map_alloc_type;
00491 
00492       typedef typename _Alloc::template rebind<_Tp>::other  _Tp_alloc_type;
00493 
00494       //This struct encapsulates the implementation of the std::deque
00495       //standard container and at the same time makes use of the EBO
00496       //for empty allocators.
00497       struct _Deque_impl
00498       : public _Tp_alloc_type
00499       {
00500     _Tp** _M_map;
00501     size_t _M_map_size;
00502     iterator _M_start;
00503     iterator _M_finish;
00504 
00505     _Deque_impl()
00506     : _Tp_alloc_type(), _M_map(0), _M_map_size(0),
00507       _M_start(), _M_finish()
00508     { }
00509 
00510     _Deque_impl(const _Tp_alloc_type& __a) _GLIBCXX_NOEXCEPT
00511     : _Tp_alloc_type(__a), _M_map(0), _M_map_size(0),
00512       _M_start(), _M_finish()
00513     { }
00514 
00515 #if __cplusplus >= 201103L
00516     _Deque_impl(_Tp_alloc_type&& __a) _GLIBCXX_NOEXCEPT
00517     : _Tp_alloc_type(std::move(__a)), _M_map(0), _M_map_size(0),
00518       _M_start(), _M_finish()
00519     { }
00520 #endif
00521       };
00522 
00523       _Tp_alloc_type&
00524       _M_get_Tp_allocator() _GLIBCXX_NOEXCEPT
00525       { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
00526 
00527       const _Tp_alloc_type&
00528       _M_get_Tp_allocator() const _GLIBCXX_NOEXCEPT
00529       { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
00530 
00531       _Map_alloc_type
00532       _M_get_map_allocator() const _GLIBCXX_NOEXCEPT
00533       { return _Map_alloc_type(_M_get_Tp_allocator()); }
00534 
00535       _Tp*
00536       _M_allocate_node()
00537       { 
00538     return _M_impl._Tp_alloc_type::allocate(__deque_buf_size(sizeof(_Tp)));
00539       }
00540 
00541       void
00542       _M_deallocate_node(_Tp* __p) _GLIBCXX_NOEXCEPT
00543       {
00544     _M_impl._Tp_alloc_type::deallocate(__p, __deque_buf_size(sizeof(_Tp)));
00545       }
00546 
00547       _Tp**
00548       _M_allocate_map(size_t __n)
00549       { return _M_get_map_allocator().allocate(__n); }
00550 
00551       void
00552       _M_deallocate_map(_Tp** __p, size_t __n) _GLIBCXX_NOEXCEPT
00553       { _M_get_map_allocator().deallocate(__p, __n); }
00554 
00555     protected:
00556       void _M_initialize_map(size_t);
00557       void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish);
00558       void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish) _GLIBCXX_NOEXCEPT;
00559       enum { _S_initial_map_size = 8 };
00560 
00561       _Deque_impl _M_impl;
00562     };
00563 
00564   template<typename _Tp, typename _Alloc>
00565     _Deque_base<_Tp, _Alloc>::
00566     ~_Deque_base() _GLIBCXX_NOEXCEPT
00567     {
00568       if (this->_M_impl._M_map)
00569     {
00570       _M_destroy_nodes(this->_M_impl._M_start._M_node,
00571                this->_M_impl._M_finish._M_node + 1);
00572       _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
00573     }
00574     }
00575 
00576   /**
00577    *  @brief Layout storage.
00578    *  @param  __num_elements  The count of T's for which to allocate space
00579    *                        at first.
00580    *  @return   Nothing.
00581    *
00582    *  The initial underlying memory layout is a bit complicated...
00583   */
00584   template<typename _Tp, typename _Alloc>
00585     void
00586     _Deque_base<_Tp, _Alloc>::
00587     _M_initialize_map(size_t __num_elements)
00588     {
00589       const size_t __num_nodes = (__num_elements/ __deque_buf_size(sizeof(_Tp))
00590                   + 1);
00591 
00592       this->_M_impl._M_map_size = std::max((size_t) _S_initial_map_size,
00593                        size_t(__num_nodes + 2));
00594       this->_M_impl._M_map = _M_allocate_map(this->_M_impl._M_map_size);
00595 
00596       // For "small" maps (needing less than _M_map_size nodes), allocation
00597       // starts in the middle elements and grows outwards.  So nstart may be
00598       // the beginning of _M_map, but for small maps it may be as far in as
00599       // _M_map+3.
00600 
00601       _Tp** __nstart = (this->_M_impl._M_map
00602             + (this->_M_impl._M_map_size - __num_nodes) / 2);
00603       _Tp** __nfinish = __nstart + __num_nodes;
00604 
00605       __try
00606     { _M_create_nodes(__nstart, __nfinish); }
00607       __catch(...)
00608     {
00609       _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
00610       this->_M_impl._M_map = 0;
00611       this->_M_impl._M_map_size = 0;
00612       __throw_exception_again;
00613     }
00614 
00615       this->_M_impl._M_start._M_set_node(__nstart);
00616       this->_M_impl._M_finish._M_set_node(__nfinish - 1);
00617       this->_M_impl._M_start._M_cur = _M_impl._M_start._M_first;
00618       this->_M_impl._M_finish._M_cur = (this->_M_impl._M_finish._M_first
00619                     + __num_elements
00620                     % __deque_buf_size(sizeof(_Tp)));
00621     }
00622 
00623   template<typename _Tp, typename _Alloc>
00624     void
00625     _Deque_base<_Tp, _Alloc>::
00626     _M_create_nodes(_Tp** __nstart, _Tp** __nfinish)
00627     {
00628       _Tp** __cur;
00629       __try
00630     {
00631       for (__cur = __nstart; __cur < __nfinish; ++__cur)
00632         *__cur = this->_M_allocate_node();
00633     }
00634       __catch(...)
00635     {
00636       _M_destroy_nodes(__nstart, __cur);
00637       __throw_exception_again;
00638     }
00639     }
00640 
00641   template<typename _Tp, typename _Alloc>
00642     void
00643     _Deque_base<_Tp, _Alloc>::
00644     _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish) _GLIBCXX_NOEXCEPT
00645     {
00646       for (_Tp** __n = __nstart; __n < __nfinish; ++__n)
00647     _M_deallocate_node(*__n);
00648     }
00649 
00650   /**
00651    *  @brief  A standard container using fixed-size memory allocation and
00652    *  constant-time manipulation of elements at either end.
00653    *
00654    *  @ingroup sequences
00655    *
00656    *  @tparam _Tp  Type of element.
00657    *  @tparam _Alloc  Allocator type, defaults to allocator<_Tp>.
00658    *
00659    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
00660    *  <a href="tables.html#66">reversible container</a>, and a
00661    *  <a href="tables.html#67">sequence</a>, including the
00662    *  <a href="tables.html#68">optional sequence requirements</a>.
00663    *
00664    *  In previous HP/SGI versions of deque, there was an extra template
00665    *  parameter so users could control the node size.  This extension turned
00666    *  out to violate the C++ standard (it can be detected using template
00667    *  template parameters), and it was removed.
00668    *
00669    *  Here's how a deque<Tp> manages memory.  Each deque has 4 members:
00670    *
00671    *  - Tp**        _M_map
00672    *  - size_t      _M_map_size
00673    *  - iterator    _M_start, _M_finish
00674    *
00675    *  map_size is at least 8.  %map is an array of map_size
00676    *  pointers-to-@a nodes.  (The name %map has nothing to do with the
00677    *  std::map class, and @b nodes should not be confused with
00678    *  std::list's usage of @a node.)
00679    *
00680    *  A @a node has no specific type name as such, but it is referred
00681    *  to as @a node in this file.  It is a simple array-of-Tp.  If Tp
00682    *  is very large, there will be one Tp element per node (i.e., an
00683    *  @a array of one).  For non-huge Tp's, node size is inversely
00684    *  related to Tp size: the larger the Tp, the fewer Tp's will fit
00685    *  in a node.  The goal here is to keep the total size of a node
00686    *  relatively small and constant over different Tp's, to improve
00687    *  allocator efficiency.
00688    *
00689    *  Not every pointer in the %map array will point to a node.  If
00690    *  the initial number of elements in the deque is small, the
00691    *  /middle/ %map pointers will be valid, and the ones at the edges
00692    *  will be unused.  This same situation will arise as the %map
00693    *  grows: available %map pointers, if any, will be on the ends.  As
00694    *  new nodes are created, only a subset of the %map's pointers need
00695    *  to be copied @a outward.
00696    *
00697    *  Class invariants:
00698    * - For any nonsingular iterator i:
00699    *    - i.node points to a member of the %map array.  (Yes, you read that
00700    *      correctly:  i.node does not actually point to a node.)  The member of
00701    *      the %map array is what actually points to the node.
00702    *    - i.first == *(i.node)    (This points to the node (first Tp element).)
00703    *    - i.last  == i.first + node_size
00704    *    - i.cur is a pointer in the range [i.first, i.last).  NOTE:
00705    *      the implication of this is that i.cur is always a dereferenceable
00706    *      pointer, even if i is a past-the-end iterator.
00707    * - Start and Finish are always nonsingular iterators.  NOTE: this
00708    * means that an empty deque must have one node, a deque with <N
00709    * elements (where N is the node buffer size) must have one node, a
00710    * deque with N through (2N-1) elements must have two nodes, etc.
00711    * - For every node other than start.node and finish.node, every
00712    * element in the node is an initialized object.  If start.node ==
00713    * finish.node, then [start.cur, finish.cur) are initialized
00714    * objects, and the elements outside that range are uninitialized
00715    * storage.  Otherwise, [start.cur, start.last) and [finish.first,
00716    * finish.cur) are initialized objects, and [start.first, start.cur)
00717    * and [finish.cur, finish.last) are uninitialized storage.
00718    * - [%map, %map + map_size) is a valid, non-empty range.
00719    * - [start.node, finish.node] is a valid range contained within
00720    *   [%map, %map + map_size).
00721    * - A pointer in the range [%map, %map + map_size) points to an allocated
00722    *   node if and only if the pointer is in the range
00723    *   [start.node, finish.node].
00724    *
00725    *  Here's the magic:  nothing in deque is @b aware of the discontiguous
00726    *  storage!
00727    *
00728    *  The memory setup and layout occurs in the parent, _Base, and the iterator
00729    *  class is entirely responsible for @a leaping from one node to the next.
00730    *  All the implementation routines for deque itself work only through the
00731    *  start and finish iterators.  This keeps the routines simple and sane,
00732    *  and we can use other standard algorithms as well.
00733   */
00734   template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
00735     class deque : protected _Deque_base<_Tp, _Alloc>
00736     {
00737       // concept requirements
00738       typedef typename _Alloc::value_type        _Alloc_value_type;
00739       __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
00740       __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
00741 
00742       typedef _Deque_base<_Tp, _Alloc>           _Base;
00743       typedef typename _Base::_Tp_alloc_type     _Tp_alloc_type;
00744 
00745     public:
00746       typedef _Tp                                        value_type;
00747       typedef typename _Tp_alloc_type::pointer           pointer;
00748       typedef typename _Tp_alloc_type::const_pointer     const_pointer;
00749       typedef typename _Tp_alloc_type::reference         reference;
00750       typedef typename _Tp_alloc_type::const_reference   const_reference;
00751       typedef typename _Base::iterator                   iterator;
00752       typedef typename _Base::const_iterator             const_iterator;
00753       typedef std::reverse_iterator<const_iterator>      const_reverse_iterator;
00754       typedef std::reverse_iterator<iterator>            reverse_iterator;
00755       typedef size_t                             size_type;
00756       typedef ptrdiff_t                          difference_type;
00757       typedef _Alloc                             allocator_type;
00758 
00759     protected:
00760       typedef pointer*                           _Map_pointer;
00761 
00762       static size_t _S_buffer_size() _GLIBCXX_NOEXCEPT
00763       { return __deque_buf_size(sizeof(_Tp)); }
00764 
00765       // Functions controlling memory layout, and nothing else.
00766       using _Base::_M_initialize_map;
00767       using _Base::_M_create_nodes;
00768       using _Base::_M_destroy_nodes;
00769       using _Base::_M_allocate_node;
00770       using _Base::_M_deallocate_node;
00771       using _Base::_M_allocate_map;
00772       using _Base::_M_deallocate_map;
00773       using _Base::_M_get_Tp_allocator;
00774 
00775       /** 
00776        *  A total of four data members accumulated down the hierarchy.
00777        *  May be accessed via _M_impl.*
00778        */
00779       using _Base::_M_impl;
00780 
00781     public:
00782       // [23.2.1.1] construct/copy/destroy
00783       // (assign() and get_allocator() are also listed in this section)
00784 
00785       /**
00786        *  @brief  Creates a %deque with no elements.
00787        */
00788       deque() : _Base() { }
00789 
00790       /**
00791        *  @brief  Creates a %deque with no elements.
00792        *  @param  __a  An allocator object.
00793        */
00794       explicit
00795       deque(const allocator_type& __a)
00796       : _Base(__a, 0) { }
00797 
00798 #if __cplusplus >= 201103L
00799       /**
00800        *  @brief  Creates a %deque with default constructed elements.
00801        *  @param  __n  The number of elements to initially create.
00802        *
00803        *  This constructor fills the %deque with @a n default
00804        *  constructed elements.
00805        */
00806       explicit
00807       deque(size_type __n)
00808       : _Base(__n)
00809       { _M_default_initialize(); }
00810 
00811       /**
00812        *  @brief  Creates a %deque with copies of an exemplar element.
00813        *  @param  __n  The number of elements to initially create.
00814        *  @param  __value  An element to copy.
00815        *  @param  __a  An allocator.
00816        *
00817        *  This constructor fills the %deque with @a __n copies of @a __value.
00818        */
00819       deque(size_type __n, const value_type& __value,
00820         const allocator_type& __a = allocator_type())
00821       : _Base(__a, __n)
00822       { _M_fill_initialize(__value); }
00823 #else
00824       /**
00825        *  @brief  Creates a %deque with copies of an exemplar element.
00826        *  @param  __n  The number of elements to initially create.
00827        *  @param  __value  An element to copy.
00828        *  @param  __a  An allocator.
00829        *
00830        *  This constructor fills the %deque with @a __n copies of @a __value.
00831        */
00832       explicit
00833       deque(size_type __n, const value_type& __value = value_type(),
00834         const allocator_type& __a = allocator_type())
00835       : _Base(__a, __n)
00836       { _M_fill_initialize(__value); }
00837 #endif
00838 
00839       /**
00840        *  @brief  %Deque copy constructor.
00841        *  @param  __x  A %deque of identical element and allocator types.
00842        *
00843        *  The newly-created %deque uses a copy of the allocation object used
00844        *  by @a __x.
00845        */
00846       deque(const deque& __x)
00847       : _Base(__x._M_get_Tp_allocator(), __x.size())
00848       { std::__uninitialized_copy_a(__x.begin(), __x.end(), 
00849                     this->_M_impl._M_start,
00850                     _M_get_Tp_allocator()); }
00851 
00852 #if __cplusplus >= 201103L
00853       /**
00854        *  @brief  %Deque move constructor.
00855        *  @param  __x  A %deque of identical element and allocator types.
00856        *
00857        *  The newly-created %deque contains the exact contents of @a __x.
00858        *  The contents of @a __x are a valid, but unspecified %deque.
00859        */
00860       deque(deque&& __x)
00861       : _Base(std::move(__x)) { }
00862 
00863       /**
00864        *  @brief  Builds a %deque from an initializer list.
00865        *  @param  __l  An initializer_list.
00866        *  @param  __a  An allocator object.
00867        *
00868        *  Create a %deque consisting of copies of the elements in the
00869        *  initializer_list @a __l.
00870        *
00871        *  This will call the element type's copy constructor N times
00872        *  (where N is __l.size()) and do no memory reallocation.
00873        */
00874       deque(initializer_list<value_type> __l,
00875         const allocator_type& __a = allocator_type())
00876       : _Base(__a)
00877       {
00878     _M_range_initialize(__l.begin(), __l.end(),
00879                 random_access_iterator_tag());
00880       }
00881 #endif
00882 
00883       /**
00884        *  @brief  Builds a %deque from a range.
00885        *  @param  __first  An input iterator.
00886        *  @param  __last  An input iterator.
00887        *  @param  __a  An allocator object.
00888        *
00889        *  Create a %deque consisting of copies of the elements from [__first,
00890        *  __last).
00891        *
00892        *  If the iterators are forward, bidirectional, or random-access, then
00893        *  this will call the elements' copy constructor N times (where N is
00894        *  distance(__first,__last)) and do no memory reallocation.  But if only
00895        *  input iterators are used, then this will do at most 2N calls to the
00896        *  copy constructor, and logN memory reallocations.
00897        */
00898 #if __cplusplus >= 201103L
00899       template<typename _InputIterator,
00900            typename = std::_RequireInputIter<_InputIterator>>
00901         deque(_InputIterator __first, _InputIterator __last,
00902           const allocator_type& __a = allocator_type())
00903     : _Base(__a)
00904         { _M_initialize_dispatch(__first, __last, __false_type()); }
00905 #else
00906       template<typename _InputIterator>
00907         deque(_InputIterator __first, _InputIterator __last,
00908           const allocator_type& __a = allocator_type())
00909     : _Base(__a)
00910         {
00911       // Check whether it's an integral type.  If so, it's not an iterator.
00912       typedef typename std::__is_integer<_InputIterator>::__type _Integral;
00913       _M_initialize_dispatch(__first, __last, _Integral());
00914     }
00915 #endif
00916 
00917       /**
00918        *  The dtor only erases the elements, and note that if the elements
00919        *  themselves are pointers, the pointed-to memory is not touched in any
00920        *  way.  Managing the pointer is the user's responsibility.
00921        */
00922       ~deque() _GLIBCXX_NOEXCEPT
00923       { _M_destroy_data(begin(), end(), _M_get_Tp_allocator()); }
00924 
00925       /**
00926        *  @brief  %Deque assignment operator.
00927        *  @param  __x  A %deque of identical element and allocator types.
00928        *
00929        *  All the elements of @a x are copied, but unlike the copy constructor,
00930        *  the allocator object is not copied.
00931        */
00932       deque&
00933       operator=(const deque& __x);
00934 
00935 #if __cplusplus >= 201103L
00936       /**
00937        *  @brief  %Deque move assignment operator.
00938        *  @param  __x  A %deque of identical element and allocator types.
00939        *
00940        *  The contents of @a __x are moved into this deque (without copying).
00941        *  @a __x is a valid, but unspecified %deque.
00942        */
00943       deque&
00944       operator=(deque&& __x) noexcept
00945       {
00946     // NB: DR 1204.
00947     // NB: DR 675.
00948     this->clear();
00949     this->swap(__x);
00950     return *this;
00951       }
00952 
00953       /**
00954        *  @brief  Assigns an initializer list to a %deque.
00955        *  @param  __l  An initializer_list.
00956        *
00957        *  This function fills a %deque with copies of the elements in the
00958        *  initializer_list @a __l.
00959        *
00960        *  Note that the assignment completely changes the %deque and that the
00961        *  resulting %deque's size is the same as the number of elements
00962        *  assigned.  Old data may be lost.
00963        */
00964       deque&
00965       operator=(initializer_list<value_type> __l)
00966       {
00967     this->assign(__l.begin(), __l.end());
00968     return *this;
00969       }
00970 #endif
00971 
00972       /**
00973        *  @brief  Assigns a given value to a %deque.
00974        *  @param  __n  Number of elements to be assigned.
00975        *  @param  __val  Value to be assigned.
00976        *
00977        *  This function fills a %deque with @a n copies of the given
00978        *  value.  Note that the assignment completely changes the
00979        *  %deque and that the resulting %deque's size is the same as
00980        *  the number of elements assigned.  Old data may be lost.
00981        */
00982       void
00983       assign(size_type __n, const value_type& __val)
00984       { _M_fill_assign(__n, __val); }
00985 
00986       /**
00987        *  @brief  Assigns a range to a %deque.
00988        *  @param  __first  An input iterator.
00989        *  @param  __last   An input iterator.
00990        *
00991        *  This function fills a %deque with copies of the elements in the
00992        *  range [__first,__last).
00993        *
00994        *  Note that the assignment completely changes the %deque and that the
00995        *  resulting %deque's size is the same as the number of elements
00996        *  assigned.  Old data may be lost.
00997        */
00998 #if __cplusplus >= 201103L
00999       template<typename _InputIterator,
01000            typename = std::_RequireInputIter<_InputIterator>>
01001         void
01002         assign(_InputIterator __first, _InputIterator __last)
01003         { _M_assign_dispatch(__first, __last, __false_type()); }
01004 #else
01005       template<typename _InputIterator>
01006         void
01007         assign(_InputIterator __first, _InputIterator __last)
01008         {
01009       typedef typename std::__is_integer<_InputIterator>::__type _Integral;
01010       _M_assign_dispatch(__first, __last, _Integral());
01011     }
01012 #endif
01013 
01014 #if __cplusplus >= 201103L
01015       /**
01016        *  @brief  Assigns an initializer list to a %deque.
01017        *  @param  __l  An initializer_list.
01018        *
01019        *  This function fills a %deque with copies of the elements in the
01020        *  initializer_list @a __l.
01021        *
01022        *  Note that the assignment completely changes the %deque and that the
01023        *  resulting %deque's size is the same as the number of elements
01024        *  assigned.  Old data may be lost.
01025        */
01026       void
01027       assign(initializer_list<value_type> __l)
01028       { this->assign(__l.begin(), __l.end()); }
01029 #endif
01030 
01031       /// Get a copy of the memory allocation object.
01032       allocator_type
01033       get_allocator() const _GLIBCXX_NOEXCEPT
01034       { return _Base::get_allocator(); }
01035 
01036       // iterators
01037       /**
01038        *  Returns a read/write iterator that points to the first element in the
01039        *  %deque.  Iteration is done in ordinary element order.
01040        */
01041       iterator
01042       begin() _GLIBCXX_NOEXCEPT
01043       { return this->_M_impl._M_start; }
01044 
01045       /**
01046        *  Returns a read-only (constant) iterator that points to the first
01047        *  element in the %deque.  Iteration is done in ordinary element order.
01048        */
01049       const_iterator
01050       begin() const _GLIBCXX_NOEXCEPT
01051       { return this->_M_impl._M_start; }
01052 
01053       /**
01054        *  Returns a read/write iterator that points one past the last
01055        *  element in the %deque.  Iteration is done in ordinary
01056        *  element order.
01057        */
01058       iterator
01059       end() _GLIBCXX_NOEXCEPT
01060       { return this->_M_impl._M_finish; }
01061 
01062       /**
01063        *  Returns a read-only (constant) iterator that points one past
01064        *  the last element in the %deque.  Iteration is done in
01065        *  ordinary element order.
01066        */
01067       const_iterator
01068       end() const _GLIBCXX_NOEXCEPT
01069       { return this->_M_impl._M_finish; }
01070 
01071       /**
01072        *  Returns a read/write reverse iterator that points to the
01073        *  last element in the %deque.  Iteration is done in reverse
01074        *  element order.
01075        */
01076       reverse_iterator
01077       rbegin() _GLIBCXX_NOEXCEPT
01078       { return reverse_iterator(this->_M_impl._M_finish); }
01079 
01080       /**
01081        *  Returns a read-only (constant) reverse iterator that points
01082        *  to the last element in the %deque.  Iteration is done in
01083        *  reverse element order.
01084        */
01085       const_reverse_iterator
01086       rbegin() const _GLIBCXX_NOEXCEPT
01087       { return const_reverse_iterator(this->_M_impl._M_finish); }
01088 
01089       /**
01090        *  Returns a read/write reverse iterator that points to one
01091        *  before the first element in the %deque.  Iteration is done
01092        *  in reverse element order.
01093        */
01094       reverse_iterator
01095       rend() _GLIBCXX_NOEXCEPT
01096       { return reverse_iterator(this->_M_impl._M_start); }
01097 
01098       /**
01099        *  Returns a read-only (constant) reverse iterator that points
01100        *  to one before the first element in the %deque.  Iteration is
01101        *  done in reverse element order.
01102        */
01103       const_reverse_iterator
01104       rend() const _GLIBCXX_NOEXCEPT
01105       { return const_reverse_iterator(this->_M_impl._M_start); }
01106 
01107 #if __cplusplus >= 201103L
01108       /**
01109        *  Returns a read-only (constant) iterator that points to the first
01110        *  element in the %deque.  Iteration is done in ordinary element order.
01111        */
01112       const_iterator
01113       cbegin() const noexcept
01114       { return this->_M_impl._M_start; }
01115 
01116       /**
01117        *  Returns a read-only (constant) iterator that points one past
01118        *  the last element in the %deque.  Iteration is done in
01119        *  ordinary element order.
01120        */
01121       const_iterator
01122       cend() const noexcept
01123       { return this->_M_impl._M_finish; }
01124 
01125       /**
01126        *  Returns a read-only (constant) reverse iterator that points
01127        *  to the last element in the %deque.  Iteration is done in
01128        *  reverse element order.
01129        */
01130       const_reverse_iterator
01131       crbegin() const noexcept
01132       { return const_reverse_iterator(this->_M_impl._M_finish); }
01133 
01134       /**
01135        *  Returns a read-only (constant) reverse iterator that points
01136        *  to one before the first element in the %deque.  Iteration is
01137        *  done in reverse element order.
01138        */
01139       const_reverse_iterator
01140       crend() const noexcept
01141       { return const_reverse_iterator(this->_M_impl._M_start); }
01142 #endif
01143 
01144       // [23.2.1.2] capacity
01145       /**  Returns the number of elements in the %deque.  */
01146       size_type
01147       size() const _GLIBCXX_NOEXCEPT
01148       { return this->_M_impl._M_finish - this->_M_impl._M_start; }
01149 
01150       /**  Returns the size() of the largest possible %deque.  */
01151       size_type
01152       max_size() const _GLIBCXX_NOEXCEPT
01153       { return _M_get_Tp_allocator().max_size(); }
01154 
01155 #if __cplusplus >= 201103L
01156       /**
01157        *  @brief  Resizes the %deque to the specified number of elements.
01158        *  @param  __new_size  Number of elements the %deque should contain.
01159        *
01160        *  This function will %resize the %deque to the specified
01161        *  number of elements.  If the number is smaller than the
01162        *  %deque's current size the %deque is truncated, otherwise
01163        *  default constructed elements are appended.
01164        */
01165       void
01166       resize(size_type __new_size)
01167       {
01168     const size_type __len = size();
01169     if (__new_size > __len)
01170       _M_default_append(__new_size - __len);
01171     else if (__new_size < __len)
01172       _M_erase_at_end(this->_M_impl._M_start
01173               + difference_type(__new_size));
01174       }
01175 
01176       /**
01177        *  @brief  Resizes the %deque to the specified number of elements.
01178        *  @param  __new_size  Number of elements the %deque should contain.
01179        *  @param  __x  Data with which new elements should be populated.
01180        *
01181        *  This function will %resize the %deque to the specified
01182        *  number of elements.  If the number is smaller than the
01183        *  %deque's current size the %deque is truncated, otherwise the
01184        *  %deque is extended and new elements are populated with given
01185        *  data.
01186        */
01187       void
01188       resize(size_type __new_size, const value_type& __x)
01189       {
01190     const size_type __len = size();
01191     if (__new_size > __len)
01192       insert(this->_M_impl._M_finish, __new_size - __len, __x);
01193     else if (__new_size < __len)
01194       _M_erase_at_end(this->_M_impl._M_start
01195               + difference_type(__new_size));
01196       }
01197 #else
01198       /**
01199        *  @brief  Resizes the %deque to the specified number of elements.
01200        *  @param  __new_size  Number of elements the %deque should contain.
01201        *  @param  __x  Data with which new elements should be populated.
01202        *
01203        *  This function will %resize the %deque to the specified
01204        *  number of elements.  If the number is smaller than the
01205        *  %deque's current size the %deque is truncated, otherwise the
01206        *  %deque is extended and new elements are populated with given
01207        *  data.
01208        */
01209       void
01210       resize(size_type __new_size, value_type __x = value_type())
01211       {
01212     const size_type __len = size();
01213     if (__new_size > __len)
01214       insert(this->_M_impl._M_finish, __new_size - __len, __x);
01215     else if (__new_size < __len)
01216       _M_erase_at_end(this->_M_impl._M_start
01217               + difference_type(__new_size));
01218       }
01219 #endif
01220 
01221 #if __cplusplus >= 201103L
01222       /**  A non-binding request to reduce memory use.  */
01223       void
01224       shrink_to_fit() noexcept
01225       { _M_shrink_to_fit(); }
01226 #endif
01227 
01228       /**
01229        *  Returns true if the %deque is empty.  (Thus begin() would
01230        *  equal end().)
01231        */
01232       bool
01233       empty() const _GLIBCXX_NOEXCEPT
01234       { return this->_M_impl._M_finish == this->_M_impl._M_start; }
01235 
01236       // element access
01237       /**
01238        *  @brief Subscript access to the data contained in the %deque.
01239        *  @param __n The index of the element for which data should be
01240        *  accessed.
01241        *  @return  Read/write reference to data.
01242        *
01243        *  This operator allows for easy, array-style, data access.
01244        *  Note that data access with this operator is unchecked and
01245        *  out_of_range lookups are not defined. (For checked lookups
01246        *  see at().)
01247        */
01248       reference
01249       operator[](size_type __n) _GLIBCXX_NOEXCEPT
01250       { return this->_M_impl._M_start[difference_type(__n)]; }
01251 
01252       /**
01253        *  @brief Subscript access to the data contained in the %deque.
01254        *  @param __n The index of the element for which data should be
01255        *  accessed.
01256        *  @return  Read-only (constant) reference to data.
01257        *
01258        *  This operator allows for easy, array-style, data access.
01259        *  Note that data access with this operator is unchecked and
01260        *  out_of_range lookups are not defined. (For checked lookups
01261        *  see at().)
01262        */
01263       const_reference
01264       operator[](size_type __n) const _GLIBCXX_NOEXCEPT
01265       { return this->_M_impl._M_start[difference_type(__n)]; }
01266 
01267     protected:
01268       /// Safety check used only from at().
01269       void
01270       _M_range_check(size_type __n) const
01271       {
01272     if (__n >= this->size())
01273       __throw_out_of_range_fmt(__N("deque::_M_range_check: __n "
01274                        "(which is %zu)>= this->size() "
01275                        "(which is %zu)"),
01276                    __n, this->size());
01277       }
01278 
01279     public:
01280       /**
01281        *  @brief  Provides access to the data contained in the %deque.
01282        *  @param __n The index of the element for which data should be
01283        *  accessed.
01284        *  @return  Read/write reference to data.
01285        *  @throw  std::out_of_range  If @a __n is an invalid index.
01286        *
01287        *  This function provides for safer data access.  The parameter
01288        *  is first checked that it is in the range of the deque.  The
01289        *  function throws out_of_range if the check fails.
01290        */
01291       reference
01292       at(size_type __n)
01293       {
01294     _M_range_check(__n);
01295     return (*this)[__n];
01296       }
01297 
01298       /**
01299        *  @brief  Provides access to the data contained in the %deque.
01300        *  @param __n The index of the element for which data should be
01301        *  accessed.
01302        *  @return  Read-only (constant) reference to data.
01303        *  @throw  std::out_of_range  If @a __n is an invalid index.
01304        *
01305        *  This function provides for safer data access.  The parameter is first
01306        *  checked that it is in the range of the deque.  The function throws
01307        *  out_of_range if the check fails.
01308        */
01309       const_reference
01310       at(size_type __n) const
01311       {
01312     _M_range_check(__n);
01313     return (*this)[__n];
01314       }
01315 
01316       /**
01317        *  Returns a read/write reference to the data at the first
01318        *  element of the %deque.
01319        */
01320       reference
01321       front() _GLIBCXX_NOEXCEPT
01322       { return *begin(); }
01323 
01324       /**
01325        *  Returns a read-only (constant) reference to the data at the first
01326        *  element of the %deque.
01327        */
01328       const_reference
01329       front() const _GLIBCXX_NOEXCEPT
01330       { return *begin(); }
01331 
01332       /**
01333        *  Returns a read/write reference to the data at the last element of the
01334        *  %deque.
01335        */
01336       reference
01337       back() _GLIBCXX_NOEXCEPT
01338       {
01339     iterator __tmp = end();
01340     --__tmp;
01341     return *__tmp;
01342       }
01343 
01344       /**
01345        *  Returns a read-only (constant) reference to the data at the last
01346        *  element of the %deque.
01347        */
01348       const_reference
01349       back() const _GLIBCXX_NOEXCEPT
01350       {
01351     const_iterator __tmp = end();
01352     --__tmp;
01353     return *__tmp;
01354       }
01355 
01356       // [23.2.1.2] modifiers
01357       /**
01358        *  @brief  Add data to the front of the %deque.
01359        *  @param  __x  Data to be added.
01360        *
01361        *  This is a typical stack operation.  The function creates an
01362        *  element at the front of the %deque and assigns the given
01363        *  data to it.  Due to the nature of a %deque this operation
01364        *  can be done in constant time.
01365        */
01366       void
01367       push_front(const value_type& __x)
01368       {
01369     if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_first)
01370       {
01371         this->_M_impl.construct(this->_M_impl._M_start._M_cur - 1, __x);
01372         --this->_M_impl._M_start._M_cur;
01373       }
01374     else
01375       _M_push_front_aux(__x);
01376       }
01377 
01378 #if __cplusplus >= 201103L
01379       void
01380       push_front(value_type&& __x)
01381       { emplace_front(std::move(__x)); }
01382 
01383       template<typename... _Args>
01384         void
01385         emplace_front(_Args&&... __args);
01386 #endif
01387 
01388       /**
01389        *  @brief  Add data to the end of the %deque.
01390        *  @param  __x  Data to be added.
01391        *
01392        *  This is a typical stack operation.  The function creates an
01393        *  element at the end of the %deque and assigns the given data
01394        *  to it.  Due to the nature of a %deque this operation can be
01395        *  done in constant time.
01396        */
01397       void
01398       push_back(const value_type& __x)
01399       {
01400     if (this->_M_impl._M_finish._M_cur
01401         != this->_M_impl._M_finish._M_last - 1)
01402       {
01403         this->_M_impl.construct(this->_M_impl._M_finish._M_cur, __x);
01404         ++this->_M_impl._M_finish._M_cur;
01405       }
01406     else
01407       _M_push_back_aux(__x);
01408       }
01409 
01410 #if __cplusplus >= 201103L
01411       void
01412       push_back(value_type&& __x)
01413       { emplace_back(std::move(__x)); }
01414 
01415       template<typename... _Args>
01416         void
01417         emplace_back(_Args&&... __args);
01418 #endif
01419 
01420       /**
01421        *  @brief  Removes first element.
01422        *
01423        *  This is a typical stack operation.  It shrinks the %deque by one.
01424        *
01425        *  Note that no data is returned, and if the first element's data is
01426        *  needed, it should be retrieved before pop_front() is called.
01427        */
01428       void
01429       pop_front() _GLIBCXX_NOEXCEPT
01430       {
01431     if (this->_M_impl._M_start._M_cur
01432         != this->_M_impl._M_start._M_last - 1)
01433       {
01434         this->_M_impl.destroy(this->_M_impl._M_start._M_cur);
01435         ++this->_M_impl._M_start._M_cur;
01436       }
01437     else
01438       _M_pop_front_aux();
01439       }
01440 
01441       /**
01442        *  @brief  Removes last element.
01443        *
01444        *  This is a typical stack operation.  It shrinks the %deque by one.
01445        *
01446        *  Note that no data is returned, and if the last element's data is
01447        *  needed, it should be retrieved before pop_back() is called.
01448        */
01449       void
01450       pop_back() _GLIBCXX_NOEXCEPT
01451       {
01452     if (this->_M_impl._M_finish._M_cur
01453         != this->_M_impl._M_finish._M_first)
01454       {
01455         --this->_M_impl._M_finish._M_cur;
01456         this->_M_impl.destroy(this->_M_impl._M_finish._M_cur);
01457       }
01458     else
01459       _M_pop_back_aux();
01460       }
01461 
01462 #if __cplusplus >= 201103L
01463       /**
01464        *  @brief  Inserts an object in %deque before specified iterator.
01465        *  @param  __position  A const_iterator into the %deque.
01466        *  @param  __args  Arguments.
01467        *  @return  An iterator that points to the inserted data.
01468        *
01469        *  This function will insert an object of type T constructed
01470        *  with T(std::forward<Args>(args)...) before the specified location.
01471        */
01472       template<typename... _Args>
01473         iterator
01474         emplace(const_iterator __position, _Args&&... __args);
01475 
01476       /**
01477        *  @brief  Inserts given value into %deque before specified iterator.
01478        *  @param  __position  A const_iterator into the %deque.
01479        *  @param  __x  Data to be inserted.
01480        *  @return  An iterator that points to the inserted data.
01481        *
01482        *  This function will insert a copy of the given value before the
01483        *  specified location.
01484        */
01485       iterator
01486       insert(const_iterator __position, const value_type& __x);
01487 #else
01488       /**
01489        *  @brief  Inserts given value into %deque before specified iterator.
01490        *  @param  __position  An iterator into the %deque.
01491        *  @param  __x  Data to be inserted.
01492        *  @return  An iterator that points to the inserted data.
01493        *
01494        *  This function will insert a copy of the given value before the
01495        *  specified location.
01496        */
01497       iterator
01498       insert(iterator __position, const value_type& __x);
01499 #endif
01500 
01501 #if __cplusplus >= 201103L
01502       /**
01503        *  @brief  Inserts given rvalue into %deque before specified iterator.
01504        *  @param  __position  A const_iterator into the %deque.
01505        *  @param  __x  Data to be inserted.
01506        *  @return  An iterator that points to the inserted data.
01507        *
01508        *  This function will insert a copy of the given rvalue before the
01509        *  specified location.
01510        */
01511       iterator
01512       insert(const_iterator __position, value_type&& __x)
01513       { return emplace(__position, std::move(__x)); }
01514 
01515       /**
01516        *  @brief  Inserts an initializer list into the %deque.
01517        *  @param  __p  An iterator into the %deque.
01518        *  @param  __l  An initializer_list.
01519        *
01520        *  This function will insert copies of the data in the
01521        *  initializer_list @a __l into the %deque before the location
01522        *  specified by @a __p.  This is known as <em>list insert</em>.
01523        */
01524       iterator
01525       insert(const_iterator __p, initializer_list<value_type> __l)
01526       { return this->insert(__p, __l.begin(), __l.end()); }
01527 #endif
01528 
01529 #if __cplusplus >= 201103L
01530       /**
01531        *  @brief  Inserts a number of copies of given data into the %deque.
01532        *  @param  __position  A const_iterator into the %deque.
01533        *  @param  __n  Number of elements to be inserted.
01534        *  @param  __x  Data to be inserted.
01535        *  @return  An iterator that points to the inserted data.
01536        *
01537        *  This function will insert a specified number of copies of the given
01538        *  data before the location specified by @a __position.
01539        */
01540       iterator
01541       insert(const_iterator __position, size_type __n, const value_type& __x)
01542       {
01543     difference_type __offset = __position - cbegin();
01544     _M_fill_insert(__position._M_const_cast(), __n, __x);
01545     return begin() + __offset;
01546       }
01547 #else
01548       /**
01549        *  @brief  Inserts a number of copies of given data into the %deque.
01550        *  @param  __position  An iterator into the %deque.
01551        *  @param  __n  Number of elements to be inserted.
01552        *  @param  __x  Data to be inserted.
01553        *
01554        *  This function will insert a specified number of copies of the given
01555        *  data before the location specified by @a __position.
01556        */
01557       void
01558       insert(iterator __position, size_type __n, const value_type& __x)
01559       { _M_fill_insert(__position, __n, __x); }
01560 #endif
01561 
01562 #if __cplusplus >= 201103L
01563       /**
01564        *  @brief  Inserts a range into the %deque.
01565        *  @param  __position  A const_iterator into the %deque.
01566        *  @param  __first  An input iterator.
01567        *  @param  __last   An input iterator.
01568        *  @return  An iterator that points to the inserted data.
01569        *
01570        *  This function will insert copies of the data in the range
01571        *  [__first,__last) into the %deque before the location specified
01572        *  by @a __position.  This is known as <em>range insert</em>.
01573        */
01574       template<typename _InputIterator,
01575            typename = std::_RequireInputIter<_InputIterator>>
01576         iterator
01577         insert(const_iterator __position, _InputIterator __first,
01578            _InputIterator __last)
01579         {
01580       difference_type __offset = __position - cbegin();
01581       _M_insert_dispatch(__position._M_const_cast(),
01582                  __first, __last, __false_type());
01583       return begin() + __offset;
01584     }
01585 #else
01586       /**
01587        *  @brief  Inserts a range into the %deque.
01588        *  @param  __position  An iterator into the %deque.
01589        *  @param  __first  An input iterator.
01590        *  @param  __last   An input iterator.
01591        *
01592        *  This function will insert copies of the data in the range
01593        *  [__first,__last) into the %deque before the location specified
01594        *  by @a __position.  This is known as <em>range insert</em>.
01595        */
01596       template<typename _InputIterator>
01597         void
01598         insert(iterator __position, _InputIterator __first,
01599            _InputIterator __last)
01600         {
01601       // Check whether it's an integral type.  If so, it's not an iterator.
01602       typedef typename std::__is_integer<_InputIterator>::__type _Integral;
01603       _M_insert_dispatch(__position, __first, __last, _Integral());
01604     }
01605 #endif
01606 
01607       /**
01608        *  @brief  Remove element at given position.
01609        *  @param  __position  Iterator pointing to element to be erased.
01610        *  @return  An iterator pointing to the next element (or end()).
01611        *
01612        *  This function will erase the element at the given position and thus
01613        *  shorten the %deque by one.
01614        *
01615        *  The user is cautioned that
01616        *  this function only erases the element, and that if the element is
01617        *  itself a pointer, the pointed-to memory is not touched in any way.
01618        *  Managing the pointer is the user's responsibility.
01619        */
01620       iterator
01621 #if __cplusplus >= 201103L
01622       erase(const_iterator __position)
01623 #else
01624       erase(iterator __position)
01625 #endif
01626       { return _M_erase(__position._M_const_cast()); }
01627 
01628       /**
01629        *  @brief  Remove a range of elements.
01630        *  @param  __first  Iterator pointing to the first element to be erased.
01631        *  @param  __last  Iterator pointing to one past the last element to be
01632        *                erased.
01633        *  @return  An iterator pointing to the element pointed to by @a last
01634        *           prior to erasing (or end()).
01635        *
01636        *  This function will erase the elements in the range
01637        *  [__first,__last) and shorten the %deque accordingly.
01638        *
01639        *  The user is cautioned that
01640        *  this function only erases the elements, and that if the elements
01641        *  themselves are pointers, the pointed-to memory is not touched in any
01642        *  way.  Managing the pointer is the user's responsibility.
01643        */
01644       iterator
01645 #if __cplusplus >= 201103L
01646       erase(const_iterator __first, const_iterator __last)
01647 #else
01648       erase(iterator __first, iterator __last)
01649 #endif
01650       { return _M_erase(__first._M_const_cast(), __last._M_const_cast()); }
01651 
01652       /**
01653        *  @brief  Swaps data with another %deque.
01654        *  @param  __x  A %deque of the same element and allocator types.
01655        *
01656        *  This exchanges the elements between two deques in constant time.
01657        *  (Four pointers, so it should be quite fast.)
01658        *  Note that the global std::swap() function is specialized such that
01659        *  std::swap(d1,d2) will feed to this function.
01660        */
01661       void
01662       swap(deque& __x) _GLIBCXX_NOEXCEPT
01663       {
01664     std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
01665     std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
01666     std::swap(this->_M_impl._M_map, __x._M_impl._M_map);
01667     std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size);
01668 
01669     // _GLIBCXX_RESOLVE_LIB_DEFECTS
01670     // 431. Swapping containers with unequal allocators.
01671     std::__alloc_swap<_Tp_alloc_type>::_S_do_it(_M_get_Tp_allocator(),
01672                             __x._M_get_Tp_allocator());
01673       }
01674 
01675       /**
01676        *  Erases all the elements.  Note that this function only erases the
01677        *  elements, and that if the elements themselves are pointers, the
01678        *  pointed-to memory is not touched in any way.  Managing the pointer is
01679        *  the user's responsibility.
01680        */
01681       void
01682       clear() _GLIBCXX_NOEXCEPT
01683       { _M_erase_at_end(begin()); }
01684 
01685     protected:
01686       // Internal constructor functions follow.
01687 
01688       // called by the range constructor to implement [23.1.1]/9
01689 
01690       // _GLIBCXX_RESOLVE_LIB_DEFECTS
01691       // 438. Ambiguity in the "do the right thing" clause
01692       template<typename _Integer>
01693         void
01694         _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
01695         {
01696       _M_initialize_map(static_cast<size_type>(__n));
01697       _M_fill_initialize(__x);
01698     }
01699 
01700       // called by the range constructor to implement [23.1.1]/9
01701       template<typename _InputIterator>
01702         void
01703         _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
01704                    __false_type)
01705         {
01706       typedef typename std::iterator_traits<_InputIterator>::
01707         iterator_category _IterCategory;
01708       _M_range_initialize(__first, __last, _IterCategory());
01709     }
01710 
01711       // called by the second initialize_dispatch above
01712       //@{
01713       /**
01714        *  @brief Fills the deque with whatever is in [first,last).
01715        *  @param  __first  An input iterator.
01716        *  @param  __last  An input iterator.
01717        *  @return   Nothing.
01718        *
01719        *  If the iterators are actually forward iterators (or better), then the
01720        *  memory layout can be done all at once.  Else we move forward using
01721        *  push_back on each value from the iterator.
01722        */
01723       template<typename _InputIterator>
01724         void
01725         _M_range_initialize(_InputIterator __first, _InputIterator __last,
01726                 std::input_iterator_tag);
01727 
01728       // called by the second initialize_dispatch above
01729       template<typename _ForwardIterator>
01730         void
01731         _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
01732                 std::forward_iterator_tag);
01733       //@}
01734 
01735       /**
01736        *  @brief Fills the %deque with copies of value.
01737        *  @param  __value  Initial value.
01738        *  @return   Nothing.
01739        *  @pre _M_start and _M_finish have already been initialized,
01740        *  but none of the %deque's elements have yet been constructed.
01741        *
01742        *  This function is called only when the user provides an explicit size
01743        *  (with or without an explicit exemplar value).
01744        */
01745       void
01746       _M_fill_initialize(const value_type& __value);
01747 
01748 #if __cplusplus >= 201103L
01749       // called by deque(n).
01750       void
01751       _M_default_initialize();
01752 #endif
01753 
01754       // Internal assign functions follow.  The *_aux functions do the actual
01755       // assignment work for the range versions.
01756 
01757       // called by the range assign to implement [23.1.1]/9
01758 
01759       // _GLIBCXX_RESOLVE_LIB_DEFECTS
01760       // 438. Ambiguity in the "do the right thing" clause
01761       template<typename _Integer>
01762         void
01763         _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
01764         { _M_fill_assign(__n, __val); }
01765 
01766       // called by the range assign to implement [23.1.1]/9
01767       template<typename _InputIterator>
01768         void
01769         _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
01770                __false_type)
01771         {
01772       typedef typename std::iterator_traits<_InputIterator>::
01773         iterator_category _IterCategory;
01774       _M_assign_aux(__first, __last, _IterCategory());
01775     }
01776 
01777       // called by the second assign_dispatch above
01778       template<typename _InputIterator>
01779         void
01780         _M_assign_aux(_InputIterator __first, _InputIterator __last,
01781               std::input_iterator_tag);
01782 
01783       // called by the second assign_dispatch above
01784       template<typename _ForwardIterator>
01785         void
01786         _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
01787               std::forward_iterator_tag)
01788         {
01789       const size_type __len = std::distance(__first, __last);
01790       if (__len > size())
01791         {
01792           _ForwardIterator __mid = __first;
01793           std::advance(__mid, size());
01794           std::copy(__first, __mid, begin());
01795           insert(end(), __mid, __last);
01796         }
01797       else
01798         _M_erase_at_end(std::copy(__first, __last, begin()));
01799     }
01800 
01801       // Called by assign(n,t), and the range assign when it turns out
01802       // to be the same thing.
01803       void
01804       _M_fill_assign(size_type __n, const value_type& __val)
01805       {
01806     if (__n > size())
01807       {
01808         std::fill(begin(), end(), __val);
01809         insert(end(), __n - size(), __val);
01810       }
01811     else
01812       {
01813         _M_erase_at_end(begin() + difference_type(__n));
01814         std::fill(begin(), end(), __val);
01815       }
01816       }
01817 
01818       //@{
01819       /// Helper functions for push_* and pop_*.
01820 #if __cplusplus < 201103L
01821       void _M_push_back_aux(const value_type&);
01822 
01823       void _M_push_front_aux(const value_type&);
01824 #else
01825       template<typename... _Args>
01826         void _M_push_back_aux(_Args&&... __args);
01827 
01828       template<typename... _Args>
01829         void _M_push_front_aux(_Args&&... __args);
01830 #endif
01831 
01832       void _M_pop_back_aux();
01833 
01834       void _M_pop_front_aux();
01835       //@}
01836 
01837       // Internal insert functions follow.  The *_aux functions do the actual
01838       // insertion work when all shortcuts fail.
01839 
01840       // called by the range insert to implement [23.1.1]/9
01841 
01842       // _GLIBCXX_RESOLVE_LIB_DEFECTS
01843       // 438. Ambiguity in the "do the right thing" clause
01844       template<typename _Integer>
01845         void
01846         _M_insert_dispatch(iterator __pos,
01847                _Integer __n, _Integer __x, __true_type)
01848         { _M_fill_insert(__pos, __n, __x); }
01849 
01850       // called by the range insert to implement [23.1.1]/9
01851       template<typename _InputIterator>
01852         void
01853         _M_insert_dispatch(iterator __pos,
01854                _InputIterator __first, _InputIterator __last,
01855                __false_type)
01856         {
01857       typedef typename std::iterator_traits<_InputIterator>::
01858         iterator_category _IterCategory;
01859           _M_range_insert_aux(__pos, __first, __last, _IterCategory());
01860     }
01861 
01862       // called by the second insert_dispatch above
01863       template<typename _InputIterator>
01864         void
01865         _M_range_insert_aux(iterator __pos, _InputIterator __first,
01866                 _InputIterator __last, std::input_iterator_tag);
01867 
01868       // called by the second insert_dispatch above
01869       template<typename _ForwardIterator>
01870         void
01871         _M_range_insert_aux(iterator __pos, _ForwardIterator __first,
01872                 _ForwardIterator __last, std::forward_iterator_tag);
01873 
01874       // Called by insert(p,n,x), and the range insert when it turns out to be
01875       // the same thing.  Can use fill functions in optimal situations,
01876       // otherwise passes off to insert_aux(p,n,x).
01877       void
01878       _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
01879 
01880       // called by insert(p,x)
01881 #if __cplusplus < 201103L
01882       iterator
01883       _M_insert_aux(iterator __pos, const value_type& __x);
01884 #else
01885       template<typename... _Args>
01886         iterator
01887         _M_insert_aux(iterator __pos, _Args&&... __args);
01888 #endif
01889 
01890       // called by insert(p,n,x) via fill_insert
01891       void
01892       _M_insert_aux(iterator __pos, size_type __n, const value_type& __x);
01893 
01894       // called by range_insert_aux for forward iterators
01895       template<typename _ForwardIterator>
01896         void
01897         _M_insert_aux(iterator __pos,
01898               _ForwardIterator __first, _ForwardIterator __last,
01899               size_type __n);
01900 
01901 
01902       // Internal erase functions follow.
01903 
01904       void
01905       _M_destroy_data_aux(iterator __first, iterator __last);
01906 
01907       // Called by ~deque().
01908       // NB: Doesn't deallocate the nodes.
01909       template<typename _Alloc1>
01910         void
01911         _M_destroy_data(iterator __first, iterator __last, const _Alloc1&)
01912         { _M_destroy_data_aux(__first, __last); }
01913 
01914       void
01915       _M_destroy_data(iterator __first, iterator __last,
01916               const std::allocator<_Tp>&)
01917       {
01918     if (!__has_trivial_destructor(value_type))
01919       _M_destroy_data_aux(__first, __last);
01920       }
01921 
01922       // Called by erase(q1, q2).
01923       void
01924       _M_erase_at_begin(iterator __pos)
01925       {
01926     _M_destroy_data(begin(), __pos, _M_get_Tp_allocator());
01927     _M_destroy_nodes(this->_M_impl._M_start._M_node, __pos._M_node);
01928     this->_M_impl._M_start = __pos;
01929       }
01930 
01931       // Called by erase(q1, q2), resize(), clear(), _M_assign_aux,
01932       // _M_fill_assign, operator=.
01933       void
01934       _M_erase_at_end(iterator __pos)
01935       {
01936     _M_destroy_data(__pos, end(), _M_get_Tp_allocator());
01937     _M_destroy_nodes(__pos._M_node + 1,
01938              this->_M_impl._M_finish._M_node + 1);
01939     this->_M_impl._M_finish = __pos;
01940       }
01941 
01942       iterator
01943       _M_erase(iterator __pos);
01944 
01945       iterator
01946       _M_erase(iterator __first, iterator __last);
01947 
01948 #if __cplusplus >= 201103L
01949       // Called by resize(sz).
01950       void
01951       _M_default_append(size_type __n);
01952 
01953       bool
01954       _M_shrink_to_fit();
01955 #endif
01956 
01957       //@{
01958       /// Memory-handling helpers for the previous internal insert functions.
01959       iterator
01960       _M_reserve_elements_at_front(size_type __n)
01961       {
01962     const size_type __vacancies = this->_M_impl._M_start._M_cur
01963                                   - this->_M_impl._M_start._M_first;
01964     if (__n > __vacancies)
01965       _M_new_elements_at_front(__n - __vacancies);
01966     return this->_M_impl._M_start - difference_type(__n);
01967       }
01968 
01969       iterator
01970       _M_reserve_elements_at_back(size_type __n)
01971       {
01972     const size_type __vacancies = (this->_M_impl._M_finish._M_last
01973                        - this->_M_impl._M_finish._M_cur) - 1;
01974     if (__n > __vacancies)
01975       _M_new_elements_at_back(__n - __vacancies);
01976     return this->_M_impl._M_finish + difference_type(__n);
01977       }
01978 
01979       void
01980       _M_new_elements_at_front(size_type __new_elements);
01981 
01982       void
01983       _M_new_elements_at_back(size_type __new_elements);
01984       //@}
01985 
01986 
01987       //@{
01988       /**
01989        *  @brief Memory-handling helpers for the major %map.
01990        *
01991        *  Makes sure the _M_map has space for new nodes.  Does not
01992        *  actually add the nodes.  Can invalidate _M_map pointers.
01993        *  (And consequently, %deque iterators.)
01994        */
01995       void
01996       _M_reserve_map_at_back(size_type __nodes_to_add = 1)
01997       {
01998     if (__nodes_to_add + 1 > this->_M_impl._M_map_size
01999         - (this->_M_impl._M_finish._M_node - this->_M_impl._M_map))
02000       _M_reallocate_map(__nodes_to_add, false);
02001       }
02002 
02003       void
02004       _M_reserve_map_at_front(size_type __nodes_to_add = 1)
02005       {
02006     if (__nodes_to_add > size_type(this->_M_impl._M_start._M_node
02007                        - this->_M_impl._M_map))
02008       _M_reallocate_map(__nodes_to_add, true);
02009       }
02010 
02011       void
02012       _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front);
02013       //@}
02014     };
02015 
02016 
02017   /**
02018    *  @brief  Deque equality comparison.
02019    *  @param  __x  A %deque.
02020    *  @param  __y  A %deque of the same type as @a __x.
02021    *  @return  True iff the size and elements of the deques are equal.
02022    *
02023    *  This is an equivalence relation.  It is linear in the size of the
02024    *  deques.  Deques are considered equivalent if their sizes are equal,
02025    *  and if corresponding elements compare equal.
02026   */
02027   template<typename _Tp, typename _Alloc>
02028     inline bool
02029     operator==(const deque<_Tp, _Alloc>& __x,
02030                          const deque<_Tp, _Alloc>& __y)
02031     { return __x.size() == __y.size()
02032              && std::equal(__x.begin(), __x.end(), __y.begin()); }
02033 
02034   /**
02035    *  @brief  Deque ordering relation.
02036    *  @param  __x  A %deque.
02037    *  @param  __y  A %deque of the same type as @a __x.
02038    *  @return  True iff @a x is lexicographically less than @a __y.
02039    *
02040    *  This is a total ordering relation.  It is linear in the size of the
02041    *  deques.  The elements must be comparable with @c <.
02042    *
02043    *  See std::lexicographical_compare() for how the determination is made.
02044   */
02045   template<typename _Tp, typename _Alloc>
02046     inline bool
02047     operator<(const deque<_Tp, _Alloc>& __x,
02048           const deque<_Tp, _Alloc>& __y)
02049     { return std::lexicographical_compare(__x.begin(), __x.end(),
02050                       __y.begin(), __y.end()); }
02051 
02052   /// Based on operator==
02053   template<typename _Tp, typename _Alloc>
02054     inline bool
02055     operator!=(const deque<_Tp, _Alloc>& __x,
02056            const deque<_Tp, _Alloc>& __y)
02057     { return !(__x == __y); }
02058 
02059   /// Based on operator<
02060   template<typename _Tp, typename _Alloc>
02061     inline bool
02062     operator>(const deque<_Tp, _Alloc>& __x,
02063           const deque<_Tp, _Alloc>& __y)
02064     { return __y < __x; }
02065 
02066   /// Based on operator<
02067   template<typename _Tp, typename _Alloc>
02068     inline bool
02069     operator<=(const deque<_Tp, _Alloc>& __x,
02070            const deque<_Tp, _Alloc>& __y)
02071     { return !(__y < __x); }
02072 
02073   /// Based on operator<
02074   template<typename _Tp, typename _Alloc>
02075     inline bool
02076     operator>=(const deque<_Tp, _Alloc>& __x,
02077            const deque<_Tp, _Alloc>& __y)
02078     { return !(__x < __y); }
02079 
02080   /// See std::deque::swap().
02081   template<typename _Tp, typename _Alloc>
02082     inline void
02083     swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y)
02084     { __x.swap(__y); }
02085 
02086 #undef _GLIBCXX_DEQUE_BUF_SIZE
02087 
02088 _GLIBCXX_END_NAMESPACE_CONTAINER
02089 } // namespace std
02090 
02091 #endif /* _STL_DEQUE_H */