libstdc++
stl_multiset.h
Go to the documentation of this file.
00001 // Multiset implementation -*- C++ -*-
00002 
00003 // Copyright (C) 2001-2015 Free Software Foundation, Inc.
00004 //
00005 // This file is part of the GNU ISO C++ Library.  This library is free
00006 // software; you can redistribute it and/or modify it under the
00007 // terms of the GNU General Public License as published by the
00008 // Free Software Foundation; either version 3, or (at your option)
00009 // any later version.
00010 
00011 // This library is distributed in the hope that it will be useful,
00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of
00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00014 // GNU General Public License for more details.
00015 
00016 // Under Section 7 of GPL version 3, you are granted additional
00017 // permissions described in the GCC Runtime Library Exception, version
00018 // 3.1, as published by the Free Software Foundation.
00019 
00020 // You should have received a copy of the GNU General Public License and
00021 // a copy of the GCC Runtime Library Exception along with this program;
00022 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
00023 // <http://www.gnu.org/licenses/>.
00024 
00025 /*
00026  *
00027  * Copyright (c) 1994
00028  * Hewlett-Packard Company
00029  *
00030  * Permission to use, copy, modify, distribute and sell this software
00031  * and its documentation for any purpose is hereby granted without fee,
00032  * provided that the above copyright notice appear in all copies and
00033  * that both that copyright notice and this permission notice appear
00034  * in supporting documentation.  Hewlett-Packard Company makes no
00035  * representations about the suitability of this software for any
00036  * purpose.  It is provided "as is" without express or implied warranty.
00037  *
00038  *
00039  * Copyright (c) 1996
00040  * Silicon Graphics Computer Systems, Inc.
00041  *
00042  * Permission to use, copy, modify, distribute and sell this software
00043  * and its documentation for any purpose is hereby granted without fee,
00044  * provided that the above copyright notice appear in all copies and
00045  * that both that copyright notice and this permission notice appear
00046  * in supporting documentation.  Silicon Graphics makes no
00047  * representations about the suitability of this software for any
00048  * purpose.  It is provided "as is" without express or implied warranty.
00049  */
00050 
00051 /** @file bits/stl_multiset.h
00052  *  This is an internal header file, included by other library headers.
00053  *  Do not attempt to use it directly. @headername{set}
00054  */
00055 
00056 #ifndef _STL_MULTISET_H
00057 #define _STL_MULTISET_H 1
00058 
00059 #include <bits/concept_check.h>
00060 #if __cplusplus >= 201103L
00061 #include <initializer_list>
00062 #endif
00063 
00064 namespace std _GLIBCXX_VISIBILITY(default)
00065 {
00066 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
00067 
00068   /**
00069    *  @brief A standard container made up of elements, which can be retrieved
00070    *  in logarithmic time.
00071    *
00072    *  @ingroup associative_containers
00073    *
00074    *
00075    *  @tparam _Key  Type of key objects.
00076    *  @tparam _Compare  Comparison function object type, defaults to less<_Key>.
00077    *  @tparam _Alloc  Allocator type, defaults to allocator<_Key>.
00078    *
00079    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
00080    *  <a href="tables.html#66">reversible container</a>, and an
00081    *  <a href="tables.html#69">associative container</a> (using equivalent
00082    *  keys).  For a @c multiset<Key> the key_type and value_type are Key.
00083    *
00084    *  Multisets support bidirectional iterators.
00085    *
00086    *  The private tree data is declared exactly the same way for set and
00087    *  multiset; the distinction is made entirely in how the tree functions are
00088    *  called (*_unique versus *_equal, same as the standard).
00089   */
00090   template <typename _Key, typename _Compare = std::less<_Key>,
00091             typename _Alloc = std::allocator<_Key> >
00092     class multiset
00093     {
00094       // concept requirements
00095       typedef typename _Alloc::value_type                   _Alloc_value_type;
00096       __glibcxx_class_requires(_Key, _SGIAssignableConcept)
00097       __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
00098                                 _BinaryFunctionConcept)
00099       __glibcxx_class_requires2(_Key, _Alloc_value_type, _SameTypeConcept)      
00100 
00101     public:
00102       // typedefs:
00103       typedef _Key     key_type;
00104       typedef _Key     value_type;
00105       typedef _Compare key_compare;
00106       typedef _Compare value_compare;
00107       typedef _Alloc   allocator_type;
00108 
00109     private:
00110       /// This turns a red-black tree into a [multi]set.
00111       typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
00112         rebind<_Key>::other _Key_alloc_type;
00113 
00114       typedef _Rb_tree<key_type, value_type, _Identity<value_type>,
00115                        key_compare, _Key_alloc_type> _Rep_type;
00116       /// The actual tree structure.
00117       _Rep_type _M_t;
00118 
00119       typedef __gnu_cxx::__alloc_traits<_Key_alloc_type> _Alloc_traits;
00120 
00121     public:
00122       typedef typename _Alloc_traits::pointer               pointer;
00123       typedef typename _Alloc_traits::const_pointer         const_pointer;
00124       typedef typename _Alloc_traits::reference             reference;
00125       typedef typename _Alloc_traits::const_reference       const_reference;
00126       // _GLIBCXX_RESOLVE_LIB_DEFECTS
00127       // DR 103. set::iterator is required to be modifiable,
00128       // but this allows modification of keys.
00129       typedef typename _Rep_type::const_iterator            iterator;
00130       typedef typename _Rep_type::const_iterator            const_iterator;
00131       typedef typename _Rep_type::const_reverse_iterator    reverse_iterator;
00132       typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
00133       typedef typename _Rep_type::size_type                 size_type;
00134       typedef typename _Rep_type::difference_type           difference_type;
00135 
00136       // allocation/deallocation
00137       /**
00138        *  @brief  Default constructor creates no elements.
00139        */
00140       multiset()
00141 #if __cplusplus >= 201103L
00142       noexcept(is_nothrow_default_constructible<allocator_type>::value)
00143 #endif
00144       : _M_t() { }
00145 
00146       /**
00147        *  @brief  Creates a %multiset with no elements.
00148        *  @param  __comp  Comparator to use.
00149        *  @param  __a  An allocator object.
00150        */
00151       explicit
00152       multiset(const _Compare& __comp,
00153                const allocator_type& __a = allocator_type())
00154       : _M_t(__comp, _Key_alloc_type(__a)) { }
00155 
00156       /**
00157        *  @brief  Builds a %multiset from a range.
00158        *  @param  __first  An input iterator.
00159        *  @param  __last  An input iterator.
00160        *
00161        *  Create a %multiset consisting of copies of the elements from
00162        *  [first,last).  This is linear in N if the range is already sorted,
00163        *  and NlogN otherwise (where N is distance(__first,__last)).
00164        */
00165       template<typename _InputIterator>
00166         multiset(_InputIterator __first, _InputIterator __last)
00167         : _M_t()
00168         { _M_t._M_insert_equal(__first, __last); }
00169 
00170       /**
00171        *  @brief  Builds a %multiset from a range.
00172        *  @param  __first  An input iterator.
00173        *  @param  __last  An input iterator.
00174        *  @param  __comp  A comparison functor.
00175        *  @param  __a  An allocator object.
00176        *
00177        *  Create a %multiset consisting of copies of the elements from
00178        *  [__first,__last).  This is linear in N if the range is already sorted,
00179        *  and NlogN otherwise (where N is distance(__first,__last)).
00180        */
00181       template<typename _InputIterator>
00182         multiset(_InputIterator __first, _InputIterator __last,
00183                  const _Compare& __comp,
00184                  const allocator_type& __a = allocator_type())
00185         : _M_t(__comp, _Key_alloc_type(__a))
00186         { _M_t._M_insert_equal(__first, __last); }
00187 
00188       /**
00189        *  @brief  %Multiset copy constructor.
00190        *  @param  __x  A %multiset of identical element and allocator types.
00191        *
00192        *  The newly-created %multiset uses a copy of the allocation object used
00193        *  by @a __x.
00194        */
00195       multiset(const multiset& __x)
00196       : _M_t(__x._M_t) { }
00197 
00198 #if __cplusplus >= 201103L
00199      /**
00200        *  @brief  %Multiset move constructor.
00201        *  @param  __x  A %multiset of identical element and allocator types.
00202        *
00203        *  The newly-created %multiset contains the exact contents of @a __x.
00204        *  The contents of @a __x are a valid, but unspecified %multiset.
00205        */
00206       multiset(multiset&& __x)
00207       noexcept(is_nothrow_copy_constructible<_Compare>::value)
00208       : _M_t(std::move(__x._M_t)) { }
00209 
00210       /**
00211        *  @brief  Builds a %multiset from an initializer_list.
00212        *  @param  __l  An initializer_list.
00213        *  @param  __comp  A comparison functor.
00214        *  @param  __a  An allocator object.
00215        *
00216        *  Create a %multiset consisting of copies of the elements from
00217        *  the list.  This is linear in N if the list is already sorted,
00218        *  and NlogN otherwise (where N is @a __l.size()).
00219        */
00220       multiset(initializer_list<value_type> __l,
00221                const _Compare& __comp = _Compare(),
00222                const allocator_type& __a = allocator_type())
00223       : _M_t(__comp, _Key_alloc_type(__a))
00224       { _M_t._M_insert_equal(__l.begin(), __l.end()); }
00225 
00226       /// Allocator-extended default constructor.
00227       explicit
00228       multiset(const allocator_type& __a)
00229       : _M_t(_Compare(), _Key_alloc_type(__a)) { }
00230 
00231       /// Allocator-extended copy constructor.
00232       multiset(const multiset& __m, const allocator_type& __a)
00233       : _M_t(__m._M_t, _Key_alloc_type(__a)) { }
00234 
00235       /// Allocator-extended move constructor.
00236       multiset(multiset&& __m, const allocator_type& __a)
00237       noexcept(is_nothrow_copy_constructible<_Compare>::value
00238                && _Alloc_traits::_S_always_equal())
00239       : _M_t(std::move(__m._M_t), _Key_alloc_type(__a)) { }
00240 
00241       /// Allocator-extended initialier-list constructor.
00242       multiset(initializer_list<value_type> __l, const allocator_type& __a)
00243       : _M_t(_Compare(), _Key_alloc_type(__a))
00244       { _M_t._M_insert_equal(__l.begin(), __l.end()); }
00245 
00246       /// Allocator-extended range constructor.
00247       template<typename _InputIterator>
00248         multiset(_InputIterator __first, _InputIterator __last,
00249                  const allocator_type& __a)
00250         : _M_t(_Compare(), _Key_alloc_type(__a))
00251         { _M_t._M_insert_equal(__first, __last); }
00252 #endif
00253 
00254       /**
00255        *  @brief  %Multiset assignment operator.
00256        *  @param  __x  A %multiset of identical element and allocator types.
00257        *
00258        *  All the elements of @a __x are copied, but unlike the copy
00259        *  constructor, the allocator object is not copied.
00260        */
00261       multiset&
00262       operator=(const multiset& __x)
00263       {
00264         _M_t = __x._M_t;
00265         return *this;
00266       }
00267 
00268 #if __cplusplus >= 201103L
00269       /// Move assignment operator.
00270       multiset&
00271       operator=(multiset&&) = default;
00272 
00273       /**
00274        *  @brief  %Multiset list assignment operator.
00275        *  @param  __l  An initializer_list.
00276        *
00277        *  This function fills a %multiset with copies of the elements in the
00278        *  initializer list @a __l.
00279        *
00280        *  Note that the assignment completely changes the %multiset and
00281        *  that the resulting %multiset's size is the same as the number
00282        *  of elements assigned.  Old data may be lost.
00283        */
00284       multiset&
00285       operator=(initializer_list<value_type> __l)
00286       {
00287         _M_t._M_assign_equal(__l.begin(), __l.end());
00288         return *this;
00289       }
00290 #endif
00291 
00292       // accessors:
00293 
00294       ///  Returns the comparison object.
00295       key_compare
00296       key_comp() const
00297       { return _M_t.key_comp(); }
00298       ///  Returns the comparison object.
00299       value_compare
00300       value_comp() const
00301       { return _M_t.key_comp(); }
00302       ///  Returns the memory allocation object.
00303       allocator_type
00304       get_allocator() const _GLIBCXX_NOEXCEPT
00305       { return allocator_type(_M_t.get_allocator()); }
00306 
00307       /**
00308        *  Returns a read-only (constant) iterator that points to the first
00309        *  element in the %multiset.  Iteration is done in ascending order
00310        *  according to the keys.
00311        */
00312       iterator
00313       begin() const _GLIBCXX_NOEXCEPT
00314       { return _M_t.begin(); }
00315 
00316       /**
00317        *  Returns a read-only (constant) iterator that points one past the last
00318        *  element in the %multiset.  Iteration is done in ascending order
00319        *  according to the keys.
00320        */
00321       iterator
00322       end() const _GLIBCXX_NOEXCEPT
00323       { return _M_t.end(); }
00324 
00325       /**
00326        *  Returns a read-only (constant) reverse iterator that points to the
00327        *  last element in the %multiset.  Iteration is done in descending order
00328        *  according to the keys.
00329        */
00330       reverse_iterator
00331       rbegin() const _GLIBCXX_NOEXCEPT
00332       { return _M_t.rbegin(); }
00333 
00334       /**
00335        *  Returns a read-only (constant) reverse iterator that points to the
00336        *  last element in the %multiset.  Iteration is done in descending order
00337        *  according to the keys.
00338        */
00339       reverse_iterator
00340       rend() const _GLIBCXX_NOEXCEPT
00341       { return _M_t.rend(); }
00342 
00343 #if __cplusplus >= 201103L
00344       /**
00345        *  Returns a read-only (constant) iterator that points to the first
00346        *  element in the %multiset.  Iteration is done in ascending order
00347        *  according to the keys.
00348        */
00349       iterator
00350       cbegin() const noexcept
00351       { return _M_t.begin(); }
00352 
00353       /**
00354        *  Returns a read-only (constant) iterator that points one past the last
00355        *  element in the %multiset.  Iteration is done in ascending order
00356        *  according to the keys.
00357        */
00358       iterator
00359       cend() const noexcept
00360       { return _M_t.end(); }
00361 
00362       /**
00363        *  Returns a read-only (constant) reverse iterator that points to the
00364        *  last element in the %multiset.  Iteration is done in descending order
00365        *  according to the keys.
00366        */
00367       reverse_iterator
00368       crbegin() const noexcept
00369       { return _M_t.rbegin(); }
00370 
00371       /**
00372        *  Returns a read-only (constant) reverse iterator that points to the
00373        *  last element in the %multiset.  Iteration is done in descending order
00374        *  according to the keys.
00375        */
00376       reverse_iterator
00377       crend() const noexcept
00378       { return _M_t.rend(); }
00379 #endif
00380 
00381       ///  Returns true if the %set is empty.
00382       bool
00383       empty() const _GLIBCXX_NOEXCEPT
00384       { return _M_t.empty(); }
00385 
00386       ///  Returns the size of the %set.
00387       size_type
00388       size() const _GLIBCXX_NOEXCEPT
00389       { return _M_t.size(); }
00390 
00391       ///  Returns the maximum size of the %set.
00392       size_type
00393       max_size() const _GLIBCXX_NOEXCEPT
00394       { return _M_t.max_size(); }
00395 
00396       /**
00397        *  @brief  Swaps data with another %multiset.
00398        *  @param  __x  A %multiset of the same element and allocator types.
00399        *
00400        *  This exchanges the elements between two multisets in constant time.
00401        *  (It is only swapping a pointer, an integer, and an instance of the @c
00402        *  Compare type (which itself is often stateless and empty), so it should
00403        *  be quite fast.)
00404        *  Note that the global std::swap() function is specialized such that
00405        *  std::swap(s1,s2) will feed to this function.
00406        */
00407       void
00408       swap(multiset& __x)
00409 #if __cplusplus >= 201103L
00410       noexcept(_Alloc_traits::_S_nothrow_swap())
00411 #endif
00412       { _M_t.swap(__x._M_t); }
00413 
00414       // insert/erase
00415 #if __cplusplus >= 201103L
00416       /**
00417        *  @brief Builds and inserts an element into the %multiset.
00418        *  @param  __args  Arguments used to generate the element instance to be
00419        *                 inserted.
00420        *  @return An iterator that points to the inserted element.
00421        *
00422        *  This function inserts an element into the %multiset.  Contrary
00423        *  to a std::set the %multiset does not rely on unique keys and thus
00424        *  multiple copies of the same element can be inserted.
00425        *
00426        *  Insertion requires logarithmic time.
00427        */
00428       template<typename... _Args>
00429         iterator
00430         emplace(_Args&&... __args)
00431         { return _M_t._M_emplace_equal(std::forward<_Args>(__args)...); }
00432 
00433       /**
00434        *  @brief Builds and inserts an element into the %multiset.
00435        *  @param  __pos  An iterator that serves as a hint as to where the
00436        *                element should be inserted.
00437        *  @param  __args  Arguments used to generate the element instance to be
00438        *                 inserted.
00439        *  @return An iterator that points to the inserted element.
00440        *
00441        *  This function inserts an element into the %multiset.  Contrary
00442        *  to a std::set the %multiset does not rely on unique keys and thus
00443        *  multiple copies of the same element can be inserted.
00444        *
00445        *  Note that the first parameter is only a hint and can potentially
00446        *  improve the performance of the insertion process.  A bad hint would
00447        *  cause no gains in efficiency.
00448        *
00449        *  See https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
00450        *  for more on @a hinting.
00451        *
00452        *  Insertion requires logarithmic time (if the hint is not taken).
00453        */
00454       template<typename... _Args>
00455         iterator
00456         emplace_hint(const_iterator __pos, _Args&&... __args)
00457         {
00458           return _M_t._M_emplace_hint_equal(__pos,
00459                                             std::forward<_Args>(__args)...);
00460         }
00461 #endif
00462 
00463       /**
00464        *  @brief Inserts an element into the %multiset.
00465        *  @param  __x  Element to be inserted.
00466        *  @return An iterator that points to the inserted element.
00467        *
00468        *  This function inserts an element into the %multiset.  Contrary
00469        *  to a std::set the %multiset does not rely on unique keys and thus
00470        *  multiple copies of the same element can be inserted.
00471        *
00472        *  Insertion requires logarithmic time.
00473        */
00474       iterator
00475       insert(const value_type& __x)
00476       { return _M_t._M_insert_equal(__x); }
00477 
00478 #if __cplusplus >= 201103L
00479       iterator
00480       insert(value_type&& __x)
00481       { return _M_t._M_insert_equal(std::move(__x)); }
00482 #endif
00483 
00484       /**
00485        *  @brief Inserts an element into the %multiset.
00486        *  @param  __position  An iterator that serves as a hint as to where the
00487        *                    element should be inserted.
00488        *  @param  __x  Element to be inserted.
00489        *  @return An iterator that points to the inserted element.
00490        *
00491        *  This function inserts an element into the %multiset.  Contrary
00492        *  to a std::set the %multiset does not rely on unique keys and thus
00493        *  multiple copies of the same element can be inserted.
00494        *
00495        *  Note that the first parameter is only a hint and can potentially
00496        *  improve the performance of the insertion process.  A bad hint would
00497        *  cause no gains in efficiency.
00498        *
00499        *  See https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
00500        *  for more on @a hinting.
00501        *
00502        *  Insertion requires logarithmic time (if the hint is not taken).
00503        */
00504       iterator
00505       insert(const_iterator __position, const value_type& __x)
00506       { return _M_t._M_insert_equal_(__position, __x); }
00507 
00508 #if __cplusplus >= 201103L
00509       iterator
00510       insert(const_iterator __position, value_type&& __x)
00511       { return _M_t._M_insert_equal_(__position, std::move(__x)); }
00512 #endif
00513 
00514       /**
00515        *  @brief A template function that tries to insert a range of elements.
00516        *  @param  __first  Iterator pointing to the start of the range to be
00517        *                   inserted.
00518        *  @param  __last  Iterator pointing to the end of the range.
00519        *
00520        *  Complexity similar to that of the range constructor.
00521        */
00522       template<typename _InputIterator>
00523         void
00524         insert(_InputIterator __first, _InputIterator __last)
00525         { _M_t._M_insert_equal(__first, __last); }
00526 
00527 #if __cplusplus >= 201103L
00528       /**
00529        *  @brief Attempts to insert a list of elements into the %multiset.
00530        *  @param  __l  A std::initializer_list<value_type> of elements
00531        *               to be inserted.
00532        *
00533        *  Complexity similar to that of the range constructor.
00534        */
00535       void
00536       insert(initializer_list<value_type> __l)
00537       { this->insert(__l.begin(), __l.end()); }
00538 #endif
00539 
00540 #if __cplusplus >= 201103L
00541       // _GLIBCXX_RESOLVE_LIB_DEFECTS
00542       // DR 130. Associative erase should return an iterator.
00543       /**
00544        *  @brief Erases an element from a %multiset.
00545        *  @param  __position  An iterator pointing to the element to be erased.
00546        *  @return An iterator pointing to the element immediately following
00547        *          @a position prior to the element being erased. If no such 
00548        *          element exists, end() is returned.
00549        *
00550        *  This function erases an element, pointed to by the given iterator,
00551        *  from a %multiset.  Note that this function only erases the element,
00552        *  and that if the element is itself a pointer, the pointed-to memory is
00553        *  not touched in any way.  Managing the pointer is the user's
00554        *  responsibility.
00555        */
00556       _GLIBCXX_ABI_TAG_CXX11
00557       iterator
00558       erase(const_iterator __position)
00559       { return _M_t.erase(__position); }
00560 #else
00561       /**
00562        *  @brief Erases an element from a %multiset.
00563        *  @param  __position  An iterator pointing to the element to be erased.
00564        *
00565        *  This function erases an element, pointed to by the given iterator,
00566        *  from a %multiset.  Note that this function only erases the element,
00567        *  and that if the element is itself a pointer, the pointed-to memory is
00568        *  not touched in any way.  Managing the pointer is the user's
00569        *  responsibility.
00570        */
00571       void
00572       erase(iterator __position)
00573       { _M_t.erase(__position); }
00574 #endif
00575 
00576       /**
00577        *  @brief Erases elements according to the provided key.
00578        *  @param  __x  Key of element to be erased.
00579        *  @return  The number of elements erased.
00580        *
00581        *  This function erases all elements located by the given key from a
00582        *  %multiset.
00583        *  Note that this function only erases the element, and that if
00584        *  the element is itself a pointer, the pointed-to memory is not touched
00585        *  in any way.  Managing the pointer is the user's responsibility.
00586        */
00587       size_type
00588       erase(const key_type& __x)
00589       { return _M_t.erase(__x); }
00590 
00591 #if __cplusplus >= 201103L
00592       // _GLIBCXX_RESOLVE_LIB_DEFECTS
00593       // DR 130. Associative erase should return an iterator.
00594       /**
00595        *  @brief Erases a [first,last) range of elements from a %multiset.
00596        *  @param  __first  Iterator pointing to the start of the range to be
00597        *                   erased.
00598        *  @param __last Iterator pointing to the end of the range to
00599        *                be erased.
00600        *  @return The iterator @a last.
00601        *
00602        *  This function erases a sequence of elements from a %multiset.
00603        *  Note that this function only erases the elements, and that if
00604        *  the elements themselves are pointers, the pointed-to memory is not
00605        *  touched in any way.  Managing the pointer is the user's
00606        *  responsibility.
00607        */
00608       _GLIBCXX_ABI_TAG_CXX11
00609       iterator
00610       erase(const_iterator __first, const_iterator __last)
00611       { return _M_t.erase(__first, __last); }
00612 #else
00613       /**
00614        *  @brief Erases a [first,last) range of elements from a %multiset.
00615        *  @param  first  Iterator pointing to the start of the range to be
00616        *                 erased.
00617        *  @param  last  Iterator pointing to the end of the range to be erased.
00618        *
00619        *  This function erases a sequence of elements from a %multiset.
00620        *  Note that this function only erases the elements, and that if
00621        *  the elements themselves are pointers, the pointed-to memory is not
00622        *  touched in any way.  Managing the pointer is the user's
00623        *  responsibility.
00624        */
00625       void
00626       erase(iterator __first, iterator __last)
00627       { _M_t.erase(__first, __last); }
00628 #endif
00629 
00630       /**
00631        *  Erases all elements in a %multiset.  Note that this function only
00632        *  erases the elements, and that if the elements themselves are pointers,
00633        *  the pointed-to memory is not touched in any way.  Managing the pointer
00634        *  is the user's responsibility.
00635        */
00636       void
00637       clear() _GLIBCXX_NOEXCEPT
00638       { _M_t.clear(); }
00639 
00640       // multiset operations:
00641 
00642       //@{
00643       /**
00644        *  @brief Finds the number of elements with given key.
00645        *  @param  __x  Key of elements to be located.
00646        *  @return Number of elements with specified key.
00647        */
00648       size_type
00649       count(const key_type& __x) const
00650       { return _M_t.count(__x); }
00651 
00652 #if __cplusplus > 201103L
00653       template<typename _Kt>
00654         auto
00655         count(const _Kt& __x) const -> decltype(_M_t._M_count_tr(__x))
00656         { return _M_t._M_count_tr(__x); }
00657 #endif
00658       //@}
00659 
00660       // _GLIBCXX_RESOLVE_LIB_DEFECTS
00661       // 214.  set::find() missing const overload
00662       //@{
00663       /**
00664        *  @brief Tries to locate an element in a %set.
00665        *  @param  __x  Element to be located.
00666        *  @return  Iterator pointing to sought-after element, or end() if not
00667        *           found.
00668        *
00669        *  This function takes a key and tries to locate the element with which
00670        *  the key matches.  If successful the function returns an iterator
00671        *  pointing to the sought after element.  If unsuccessful it returns the
00672        *  past-the-end ( @c end() ) iterator.
00673        */
00674       iterator
00675       find(const key_type& __x)
00676       { return _M_t.find(__x); }
00677 
00678       const_iterator
00679       find(const key_type& __x) const
00680       { return _M_t.find(__x); }
00681 
00682 #if __cplusplus > 201103L
00683       template<typename _Kt>
00684         auto
00685         find(const _Kt& __x)
00686         -> decltype(iterator{_M_t._M_find_tr(__x)})
00687         { return iterator{_M_t._M_find_tr(__x)}; }
00688 
00689       template<typename _Kt>
00690         auto
00691         find(const _Kt& __x) const
00692         -> decltype(const_iterator{_M_t._M_find_tr(__x)})
00693         { return const_iterator{_M_t._M_find_tr(__x)}; }
00694 #endif
00695       //@}
00696 
00697       //@{
00698       /**
00699        *  @brief Finds the beginning of a subsequence matching given key.
00700        *  @param  __x  Key to be located.
00701        *  @return  Iterator pointing to first element equal to or greater
00702        *           than key, or end().
00703        *
00704        *  This function returns the first element of a subsequence of elements
00705        *  that matches the given key.  If unsuccessful it returns an iterator
00706        *  pointing to the first element that has a greater value than given key
00707        *  or end() if no such element exists.
00708        */
00709       iterator
00710       lower_bound(const key_type& __x)
00711       { return _M_t.lower_bound(__x); }
00712 
00713       const_iterator
00714       lower_bound(const key_type& __x) const
00715       { return _M_t.lower_bound(__x); }
00716 
00717 #if __cplusplus > 201103L
00718       template<typename _Kt>
00719         auto
00720         lower_bound(const _Kt& __x)
00721         -> decltype(_M_t._M_lower_bound_tr(__x))
00722         { return _M_t._M_lower_bound_tr(__x); }
00723 
00724       template<typename _Kt>
00725         auto
00726         lower_bound(const _Kt& __x) const
00727         -> decltype(_M_t._M_lower_bound_tr(__x))
00728         { return _M_t._M_lower_bound_tr(__x); }
00729 #endif
00730       //@}
00731 
00732       //@{
00733       /**
00734        *  @brief Finds the end of a subsequence matching given key.
00735        *  @param  __x  Key to be located.
00736        *  @return Iterator pointing to the first element
00737        *          greater than key, or end().
00738        */
00739       iterator
00740       upper_bound(const key_type& __x)
00741       { return _M_t.upper_bound(__x); }
00742 
00743       const_iterator
00744       upper_bound(const key_type& __x) const
00745       { return _M_t.upper_bound(__x); }
00746 
00747 #if __cplusplus > 201103L
00748       template<typename _Kt>
00749         auto
00750         upper_bound(const _Kt& __x)
00751         -> decltype(_M_t._M_upper_bound_tr(__x))
00752         { return _M_t._M_upper_bound_tr(__x); }
00753 
00754       template<typename _Kt>
00755         auto
00756         upper_bound(const _Kt& __x) const
00757         -> decltype(_M_t._M_upper_bound_tr(__x))
00758         { return _M_t._M_upper_bound_tr(__x); }
00759 #endif
00760       //@}
00761 
00762       //@{
00763       /**
00764        *  @brief Finds a subsequence matching given key.
00765        *  @param  __x  Key to be located.
00766        *  @return  Pair of iterators that possibly points to the subsequence
00767        *           matching given key.
00768        *
00769        *  This function is equivalent to
00770        *  @code
00771        *    std::make_pair(c.lower_bound(val),
00772        *                   c.upper_bound(val))
00773        *  @endcode
00774        *  (but is faster than making the calls separately).
00775        *
00776        *  This function probably only makes sense for multisets.
00777        */
00778       std::pair<iterator, iterator>
00779       equal_range(const key_type& __x)
00780       { return _M_t.equal_range(__x); }
00781 
00782       std::pair<const_iterator, const_iterator>
00783       equal_range(const key_type& __x) const
00784       { return _M_t.equal_range(__x); }
00785 
00786 #if __cplusplus > 201103L
00787       template<typename _Kt>
00788         auto
00789         equal_range(const _Kt& __x)
00790         -> decltype(_M_t._M_equal_range_tr(__x))
00791         { return _M_t._M_equal_range_tr(__x); }
00792 
00793       template<typename _Kt>
00794         auto
00795         equal_range(const _Kt& __x) const
00796         -> decltype(_M_t._M_equal_range_tr(__x))
00797         { return _M_t._M_equal_range_tr(__x); }
00798 #endif
00799       //@}
00800 
00801       template<typename _K1, typename _C1, typename _A1>
00802         friend bool
00803         operator==(const multiset<_K1, _C1, _A1>&,
00804                    const multiset<_K1, _C1, _A1>&);
00805 
00806       template<typename _K1, typename _C1, typename _A1>
00807         friend bool
00808         operator< (const multiset<_K1, _C1, _A1>&,
00809                    const multiset<_K1, _C1, _A1>&);
00810     };
00811 
00812   /**
00813    *  @brief  Multiset equality comparison.
00814    *  @param  __x  A %multiset.
00815    *  @param  __y  A %multiset of the same type as @a __x.
00816    *  @return  True iff the size and elements of the multisets are equal.
00817    *
00818    *  This is an equivalence relation.  It is linear in the size of the
00819    *  multisets.
00820    *  Multisets are considered equivalent if their sizes are equal, and if
00821    *  corresponding elements compare equal.
00822   */
00823   template<typename _Key, typename _Compare, typename _Alloc>
00824     inline bool
00825     operator==(const multiset<_Key, _Compare, _Alloc>& __x,
00826                const multiset<_Key, _Compare, _Alloc>& __y)
00827     { return __x._M_t == __y._M_t; }
00828 
00829   /**
00830    *  @brief  Multiset ordering relation.
00831    *  @param  __x  A %multiset.
00832    *  @param  __y  A %multiset of the same type as @a __x.
00833    *  @return  True iff @a __x is lexicographically less than @a __y.
00834    *
00835    *  This is a total ordering relation.  It is linear in the size of the
00836    *  sets.  The elements must be comparable with @c <.
00837    *
00838    *  See std::lexicographical_compare() for how the determination is made.
00839   */
00840   template<typename _Key, typename _Compare, typename _Alloc>
00841     inline bool
00842     operator<(const multiset<_Key, _Compare, _Alloc>& __x,
00843               const multiset<_Key, _Compare, _Alloc>& __y)
00844     { return __x._M_t < __y._M_t; }
00845 
00846   ///  Returns !(x == y).
00847   template<typename _Key, typename _Compare, typename _Alloc>
00848     inline bool
00849     operator!=(const multiset<_Key, _Compare, _Alloc>& __x,
00850                const multiset<_Key, _Compare, _Alloc>& __y)
00851     { return !(__x == __y); }
00852 
00853   ///  Returns y < x.
00854   template<typename _Key, typename _Compare, typename _Alloc>
00855     inline bool
00856     operator>(const multiset<_Key,_Compare,_Alloc>& __x,
00857               const multiset<_Key,_Compare,_Alloc>& __y)
00858     { return __y < __x; }
00859 
00860   ///  Returns !(y < x)
00861   template<typename _Key, typename _Compare, typename _Alloc>
00862     inline bool
00863     operator<=(const multiset<_Key, _Compare, _Alloc>& __x,
00864                const multiset<_Key, _Compare, _Alloc>& __y)
00865     { return !(__y < __x); }
00866 
00867   ///  Returns !(x < y)
00868   template<typename _Key, typename _Compare, typename _Alloc>
00869     inline bool
00870     operator>=(const multiset<_Key, _Compare, _Alloc>& __x,
00871                const multiset<_Key, _Compare, _Alloc>& __y)
00872     { return !(__x < __y); }
00873 
00874   /// See std::multiset::swap().
00875   template<typename _Key, typename _Compare, typename _Alloc>
00876     inline void
00877     swap(multiset<_Key, _Compare, _Alloc>& __x,
00878          multiset<_Key, _Compare, _Alloc>& __y)
00879     { __x.swap(__y); }
00880 
00881 _GLIBCXX_END_NAMESPACE_CONTAINER
00882 } // namespace std
00883 
00884 #endif /* _STL_MULTISET_H */