LLVM OpenMP* Runtime Library
Loading...
Searching...
No Matches
kmp.h
1
2/*
3 * kmp.h -- KPTS runtime header file.
4 */
5
6//===----------------------------------------------------------------------===//
7//
8// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
9// See https://llvm.org/LICENSE.txt for license information.
10// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef KMP_H
15#define KMP_H
16
17#include "kmp_config.h"
18
19/* #define BUILD_PARALLEL_ORDERED 1 */
20
21/* This fix replaces gettimeofday with clock_gettime for better scalability on
22 the Altix. Requires user code to be linked with -lrt. */
23//#define FIX_SGI_CLOCK
24
25/* Defines for OpenMP 3.0 tasking and auto scheduling */
26
27#ifndef KMP_STATIC_STEAL_ENABLED
28#define KMP_STATIC_STEAL_ENABLED 1
29#endif
30
31#define TASK_CURRENT_NOT_QUEUED 0
32#define TASK_CURRENT_QUEUED 1
33
34#ifdef BUILD_TIED_TASK_STACK
35#define TASK_STACK_EMPTY 0 // entries when the stack is empty
36#define TASK_STACK_BLOCK_BITS 5 // Used in TASK_STACK_SIZE and TASK_STACK_MASK
37// Number of entries in each task stack array
38#define TASK_STACK_BLOCK_SIZE (1 << TASK_STACK_BLOCK_BITS)
39// Mask for determining index into stack block
40#define TASK_STACK_INDEX_MASK (TASK_STACK_BLOCK_SIZE - 1)
41#endif // BUILD_TIED_TASK_STACK
42
43#define TASK_NOT_PUSHED 1
44#define TASK_SUCCESSFULLY_PUSHED 0
45#define TASK_TIED 1
46#define TASK_UNTIED 0
47#define TASK_EXPLICIT 1
48#define TASK_IMPLICIT 0
49#define TASK_PROXY 1
50#define TASK_FULL 0
51#define TASK_DETACHABLE 1
52#define TASK_UNDETACHABLE 0
53
54#define KMP_CANCEL_THREADS
55#define KMP_THREAD_ATTR
56
57// Android does not have pthread_cancel. Undefine KMP_CANCEL_THREADS if being
58// built on Android
59#if defined(__ANDROID__)
60#undef KMP_CANCEL_THREADS
61#endif
62
63#include <signal.h>
64#include <stdarg.h>
65#include <stddef.h>
66#include <stdio.h>
67#include <stdlib.h>
68#include <string.h>
69/* include <ctype.h> don't use; problems with /MD on Windows* OS NT due to bad
70 Microsoft library. Some macros provided below to replace these functions */
71#ifndef __ABSOFT_WIN
72#include <sys/types.h>
73#endif
74#include <limits.h>
75#include <time.h>
76
77#include <errno.h>
78
79#include "kmp_os.h"
80
81#include "kmp_safe_c_api.h"
82
83#if KMP_STATS_ENABLED
84class kmp_stats_list;
85#endif
86
87#if KMP_USE_HIER_SCHED
88// Only include hierarchical scheduling if affinity is supported
89#undef KMP_USE_HIER_SCHED
90#define KMP_USE_HIER_SCHED KMP_AFFINITY_SUPPORTED
91#endif
92
93#if KMP_USE_HWLOC && KMP_AFFINITY_SUPPORTED
94#include "hwloc.h"
95#ifndef HWLOC_OBJ_NUMANODE
96#define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE
97#endif
98#ifndef HWLOC_OBJ_PACKAGE
99#define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET
100#endif
101#if HWLOC_API_VERSION >= 0x00020000
102// hwloc 2.0 changed type of depth of object from unsigned to int
103typedef int kmp_hwloc_depth_t;
104#else
105typedef unsigned int kmp_hwloc_depth_t;
106#endif
107#endif
108
109#if KMP_ARCH_X86 || KMP_ARCH_X86_64
110#include <xmmintrin.h>
111#endif
112
113#include "kmp_debug.h"
114#include "kmp_lock.h"
115#include "kmp_version.h"
116#if USE_DEBUGGER
117#include "kmp_debugger.h"
118#endif
119#include "kmp_i18n.h"
120
121#define KMP_HANDLE_SIGNALS (KMP_OS_UNIX || KMP_OS_WINDOWS)
122
123#include "kmp_wrapper_malloc.h"
124#if KMP_OS_UNIX
125#include <unistd.h>
126#if !defined NSIG && defined _NSIG
127#define NSIG _NSIG
128#endif
129#endif
130
131#if KMP_OS_LINUX
132#pragma weak clock_gettime
133#endif
134
135#if OMPT_SUPPORT
136#include "ompt-internal.h"
137#endif
138
139// Affinity format function
140#include "kmp_str.h"
141
142// 0 - no fast memory allocation, alignment: 8-byte on x86, 16-byte on x64.
143// 3 - fast allocation using sync, non-sync free lists of any size, non-self
144// free lists of limited size.
145#ifndef USE_FAST_MEMORY
146#define USE_FAST_MEMORY 3
147#endif
148
149#ifndef KMP_NESTED_HOT_TEAMS
150#define KMP_NESTED_HOT_TEAMS 0
151#define USE_NESTED_HOT_ARG(x)
152#else
153#if KMP_NESTED_HOT_TEAMS
154#define USE_NESTED_HOT_ARG(x) , x
155#else
156#define USE_NESTED_HOT_ARG(x)
157#endif
158#endif
159
160// Assume using BGET compare_exchange instruction instead of lock by default.
161#ifndef USE_CMP_XCHG_FOR_BGET
162#define USE_CMP_XCHG_FOR_BGET 1
163#endif
164
165// Test to see if queuing lock is better than bootstrap lock for bget
166// #ifndef USE_QUEUING_LOCK_FOR_BGET
167// #define USE_QUEUING_LOCK_FOR_BGET
168// #endif
169
170#define KMP_NSEC_PER_SEC 1000000000L
171#define KMP_USEC_PER_SEC 1000000L
172
181enum {
186 /* 0x04 is no longer used */
195 KMP_IDENT_BARRIER_IMPL_MASK = 0x01C0,
196 KMP_IDENT_BARRIER_IMPL_FOR = 0x0040,
197 KMP_IDENT_BARRIER_IMPL_SECTIONS = 0x00C0,
198
199 KMP_IDENT_BARRIER_IMPL_SINGLE = 0x0140,
200 KMP_IDENT_BARRIER_IMPL_WORKSHARE = 0x01C0,
201
213 KMP_IDENT_ATOMIC_HINT_UNCONTENDED = 0x010000,
214 KMP_IDENT_ATOMIC_HINT_CONTENDED = 0x020000,
215 KMP_IDENT_ATOMIC_HINT_NONSPECULATIVE = 0x040000,
216 KMP_IDENT_ATOMIC_HINT_SPECULATIVE = 0x080000,
217};
218
222typedef struct ident {
223 kmp_int32 reserved_1;
224 kmp_int32 flags;
226 kmp_int32 reserved_2;
227#if USE_ITT_BUILD
228/* but currently used for storing region-specific ITT */
229/* contextual information. */
230#endif /* USE_ITT_BUILD */
231 kmp_int32 reserved_3;
232 char const *psource;
241// Some forward declarations.
242typedef union kmp_team kmp_team_t;
243typedef struct kmp_taskdata kmp_taskdata_t;
244typedef union kmp_task_team kmp_task_team_t;
245typedef union kmp_team kmp_team_p;
246typedef union kmp_info kmp_info_p;
247typedef union kmp_root kmp_root_p;
248
249#ifdef __cplusplus
250extern "C" {
251#endif
252
253/* ------------------------------------------------------------------------ */
254
255/* Pack two 32-bit signed integers into a 64-bit signed integer */
256/* ToDo: Fix word ordering for big-endian machines. */
257#define KMP_PACK_64(HIGH_32, LOW_32) \
258 ((kmp_int64)((((kmp_uint64)(HIGH_32)) << 32) | (kmp_uint64)(LOW_32)))
259
260// Generic string manipulation macros. Assume that _x is of type char *
261#define SKIP_WS(_x) \
262 { \
263 while (*(_x) == ' ' || *(_x) == '\t') \
264 (_x)++; \
265 }
266#define SKIP_DIGITS(_x) \
267 { \
268 while (*(_x) >= '0' && *(_x) <= '9') \
269 (_x)++; \
270 }
271#define SKIP_TOKEN(_x) \
272 { \
273 while ((*(_x) >= '0' && *(_x) <= '9') || (*(_x) >= 'a' && *(_x) <= 'z') || \
274 (*(_x) >= 'A' && *(_x) <= 'Z') || *(_x) == '_') \
275 (_x)++; \
276 }
277#define SKIP_TO(_x, _c) \
278 { \
279 while (*(_x) != '\0' && *(_x) != (_c)) \
280 (_x)++; \
281 }
282
283/* ------------------------------------------------------------------------ */
284
285#define KMP_MAX(x, y) ((x) > (y) ? (x) : (y))
286#define KMP_MIN(x, y) ((x) < (y) ? (x) : (y))
287
288/* ------------------------------------------------------------------------ */
289/* Enumeration types */
290
291enum kmp_state_timer {
292 ts_stop,
293 ts_start,
294 ts_pause,
295
296 ts_last_state
297};
298
299enum dynamic_mode {
300 dynamic_default,
301#ifdef USE_LOAD_BALANCE
302 dynamic_load_balance,
303#endif /* USE_LOAD_BALANCE */
304 dynamic_random,
305 dynamic_thread_limit,
306 dynamic_max
307};
308
309/* external schedule constants, duplicate enum omp_sched in omp.h in order to
310 * not include it here */
311#ifndef KMP_SCHED_TYPE_DEFINED
312#define KMP_SCHED_TYPE_DEFINED
313typedef enum kmp_sched {
314 kmp_sched_lower = 0, // lower and upper bounds are for routine parameter check
315 // Note: need to adjust __kmp_sch_map global array in case enum is changed
316 kmp_sched_static = 1, // mapped to kmp_sch_static_chunked (33)
317 kmp_sched_dynamic = 2, // mapped to kmp_sch_dynamic_chunked (35)
318 kmp_sched_guided = 3, // mapped to kmp_sch_guided_chunked (36)
319 kmp_sched_auto = 4, // mapped to kmp_sch_auto (38)
320 kmp_sched_upper_std = 5, // upper bound for standard schedules
321 kmp_sched_lower_ext = 100, // lower bound of Intel extension schedules
322 kmp_sched_trapezoidal = 101, // mapped to kmp_sch_trapezoidal (39)
323#if KMP_STATIC_STEAL_ENABLED
324 kmp_sched_static_steal = 102, // mapped to kmp_sch_static_steal (44)
325#endif
326 kmp_sched_upper,
327 kmp_sched_default = kmp_sched_static, // default scheduling
328 kmp_sched_monotonic = 0x80000000
329} kmp_sched_t;
330#endif
331
336enum sched_type : kmp_int32 {
338 kmp_sch_static_chunked = 33,
340 kmp_sch_dynamic_chunked = 35,
342 kmp_sch_runtime = 37,
344 kmp_sch_trapezoidal = 39,
345
346 /* accessible only through KMP_SCHEDULE environment variable */
347 kmp_sch_static_greedy = 40,
348 kmp_sch_static_balanced = 41,
349 /* accessible only through KMP_SCHEDULE environment variable */
350 kmp_sch_guided_iterative_chunked = 42,
351 kmp_sch_guided_analytical_chunked = 43,
352 /* accessible only through KMP_SCHEDULE environment variable */
353 kmp_sch_static_steal = 44,
354
355 /* static with chunk adjustment (e.g., simd) */
356 kmp_sch_static_balanced_chunked = 45,
360 /* accessible only through KMP_SCHEDULE environment variable */
364 kmp_ord_static_chunked = 65,
366 kmp_ord_dynamic_chunked = 67,
367 kmp_ord_guided_chunked = 68,
368 kmp_ord_runtime = 69,
370 kmp_ord_trapezoidal = 71,
373 /* Schedules for Distribute construct */
377 /* For the "nomerge" versions, kmp_dispatch_next*() will always return a
378 single iteration/chunk, even if the loop is serialized. For the schedule
379 types listed above, the entire iteration vector is returned if the loop is
380 serialized. This doesn't work for gcc/gcomp sections. */
383 kmp_nm_static_chunked =
384 (kmp_sch_static_chunked - kmp_sch_lower + kmp_nm_lower),
386 kmp_nm_dynamic_chunked = 163,
388 kmp_nm_runtime = 165,
390 kmp_nm_trapezoidal = 167,
391
392 /* accessible only through KMP_SCHEDULE environment variable */
393 kmp_nm_static_greedy = 168,
394 kmp_nm_static_balanced = 169,
395 /* accessible only through KMP_SCHEDULE environment variable */
396 kmp_nm_guided_iterative_chunked = 170,
397 kmp_nm_guided_analytical_chunked = 171,
398 kmp_nm_static_steal =
399 172, /* accessible only through OMP_SCHEDULE environment variable */
400
401 kmp_nm_ord_static_chunked = 193,
403 kmp_nm_ord_dynamic_chunked = 195,
404 kmp_nm_ord_guided_chunked = 196,
405 kmp_nm_ord_runtime = 197,
407 kmp_nm_ord_trapezoidal = 199,
410 /* Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. Since
411 we need to distinguish the three possible cases (no modifier, monotonic
412 modifier, nonmonotonic modifier), we need separate bits for each modifier.
413 The absence of monotonic does not imply nonmonotonic, especially since 4.5
414 says that the behaviour of the "no modifier" case is implementation defined
415 in 4.5, but will become "nonmonotonic" in 5.0.
416
417 Since we're passing a full 32 bit value, we can use a couple of high bits
418 for these flags; out of paranoia we avoid the sign bit.
419
420 These modifiers can be or-ed into non-static schedules by the compiler to
421 pass the additional information. They will be stripped early in the
422 processing in __kmp_dispatch_init when setting up schedules, so most of the
423 code won't ever see schedules with these bits set. */
425 (1 << 29),
427 (1 << 30),
429#define SCHEDULE_WITHOUT_MODIFIERS(s) \
430 (enum sched_type)( \
432#define SCHEDULE_HAS_MONOTONIC(s) (((s)&kmp_sch_modifier_monotonic) != 0)
433#define SCHEDULE_HAS_NONMONOTONIC(s) (((s)&kmp_sch_modifier_nonmonotonic) != 0)
434#define SCHEDULE_HAS_NO_MODIFIERS(s) \
435 (((s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)) == 0)
436#define SCHEDULE_GET_MODIFIERS(s) \
437 ((enum sched_type)( \
438 (s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)))
439#define SCHEDULE_SET_MODIFIERS(s, m) \
440 (s = (enum sched_type)((kmp_int32)s | (kmp_int32)m))
441#define SCHEDULE_NONMONOTONIC 0
442#define SCHEDULE_MONOTONIC 1
443
446
447// Apply modifiers on internal kind to standard kind
448static inline void
449__kmp_sched_apply_mods_stdkind(kmp_sched_t *kind,
450 enum sched_type internal_kind) {
451 if (SCHEDULE_HAS_MONOTONIC(internal_kind)) {
452 *kind = (kmp_sched_t)((int)*kind | (int)kmp_sched_monotonic);
453 }
454}
455
456// Apply modifiers on standard kind to internal kind
457static inline void
458__kmp_sched_apply_mods_intkind(kmp_sched_t kind,
459 enum sched_type *internal_kind) {
460 if ((int)kind & (int)kmp_sched_monotonic) {
461 *internal_kind = (enum sched_type)((int)*internal_kind |
463 }
464}
465
466// Get standard schedule without modifiers
467static inline kmp_sched_t __kmp_sched_without_mods(kmp_sched_t kind) {
468 return (kmp_sched_t)((int)kind & ~((int)kmp_sched_monotonic));
469}
470
471/* Type to keep runtime schedule set via OMP_SCHEDULE or omp_set_schedule() */
472typedef union kmp_r_sched {
473 struct {
474 enum sched_type r_sched_type;
475 int chunk;
476 };
477 kmp_int64 sched;
478} kmp_r_sched_t;
479
480extern enum sched_type __kmp_sch_map[]; // map OMP 3.0 schedule types with our
481// internal schedule types
482
483enum library_type {
484 library_none,
485 library_serial,
486 library_turnaround,
487 library_throughput
488};
489
490#if KMP_OS_LINUX
491enum clock_function_type {
492 clock_function_gettimeofday,
493 clock_function_clock_gettime
494};
495#endif /* KMP_OS_LINUX */
496
497#if KMP_MIC_SUPPORTED
498enum mic_type { non_mic, mic1, mic2, mic3, dummy };
499#endif
500
501/* -- fast reduction stuff ------------------------------------------------ */
502
503#undef KMP_FAST_REDUCTION_BARRIER
504#define KMP_FAST_REDUCTION_BARRIER 1
505
506#undef KMP_FAST_REDUCTION_CORE_DUO
507#if KMP_ARCH_X86 || KMP_ARCH_X86_64
508#define KMP_FAST_REDUCTION_CORE_DUO 1
509#endif
510
511enum _reduction_method {
512 reduction_method_not_defined = 0,
513 critical_reduce_block = (1 << 8),
514 atomic_reduce_block = (2 << 8),
515 tree_reduce_block = (3 << 8),
516 empty_reduce_block = (4 << 8)
517};
518
519// Description of the packed_reduction_method variable:
520// The packed_reduction_method variable consists of two enum types variables
521// that are packed together into 0-th byte and 1-st byte:
522// 0: (packed_reduction_method & 0x000000FF) is a 'enum barrier_type' value of
523// barrier that will be used in fast reduction: bs_plain_barrier or
524// bs_reduction_barrier
525// 1: (packed_reduction_method & 0x0000FF00) is a reduction method that will
526// be used in fast reduction;
527// Reduction method is of 'enum _reduction_method' type and it's defined the way
528// so that the bits of 0-th byte are empty, so no need to execute a shift
529// instruction while packing/unpacking
530
531#if KMP_FAST_REDUCTION_BARRIER
532#define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \
533 ((reduction_method) | (barrier_type))
534
535#define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
536 ((enum _reduction_method)((packed_reduction_method) & (0x0000FF00)))
537
538#define UNPACK_REDUCTION_BARRIER(packed_reduction_method) \
539 ((enum barrier_type)((packed_reduction_method) & (0x000000FF)))
540#else
541#define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \
542 (reduction_method)
543
544#define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
545 (packed_reduction_method)
546
547#define UNPACK_REDUCTION_BARRIER(packed_reduction_method) (bs_plain_barrier)
548#endif
549
550#define TEST_REDUCTION_METHOD(packed_reduction_method, which_reduction_block) \
551 ((UNPACK_REDUCTION_METHOD(packed_reduction_method)) == \
552 (which_reduction_block))
553
554#if KMP_FAST_REDUCTION_BARRIER
555#define TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER \
556 (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_reduction_barrier))
557
558#define TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER \
559 (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_plain_barrier))
560#endif
561
562typedef int PACKED_REDUCTION_METHOD_T;
563
564/* -- end of fast reduction stuff ----------------------------------------- */
565
566#if KMP_OS_WINDOWS
567#define USE_CBLKDATA
568#if KMP_MSVC_COMPAT
569#pragma warning(push)
570#pragma warning(disable : 271 310)
571#endif
572#include <windows.h>
573#if KMP_MSVC_COMPAT
574#pragma warning(pop)
575#endif
576#endif
577
578#if KMP_OS_UNIX
579#include <dlfcn.h>
580#include <pthread.h>
581#endif
582
583/* Only Linux* OS and Windows* OS support thread affinity. */
584#if KMP_AFFINITY_SUPPORTED
585
586// GROUP_AFFINITY is already defined for _MSC_VER>=1600 (VS2010 and later).
587#if KMP_OS_WINDOWS
588#if _MSC_VER < 1600 && KMP_MSVC_COMPAT
589typedef struct GROUP_AFFINITY {
590 KAFFINITY Mask;
591 WORD Group;
592 WORD Reserved[3];
593} GROUP_AFFINITY;
594#endif /* _MSC_VER < 1600 */
595#if KMP_GROUP_AFFINITY
596extern int __kmp_num_proc_groups;
597#else
598static const int __kmp_num_proc_groups = 1;
599#endif /* KMP_GROUP_AFFINITY */
600typedef DWORD (*kmp_GetActiveProcessorCount_t)(WORD);
601extern kmp_GetActiveProcessorCount_t __kmp_GetActiveProcessorCount;
602
603typedef WORD (*kmp_GetActiveProcessorGroupCount_t)(void);
604extern kmp_GetActiveProcessorGroupCount_t __kmp_GetActiveProcessorGroupCount;
605
606typedef BOOL (*kmp_GetThreadGroupAffinity_t)(HANDLE, GROUP_AFFINITY *);
607extern kmp_GetThreadGroupAffinity_t __kmp_GetThreadGroupAffinity;
608
609typedef BOOL (*kmp_SetThreadGroupAffinity_t)(HANDLE, const GROUP_AFFINITY *,
610 GROUP_AFFINITY *);
611extern kmp_SetThreadGroupAffinity_t __kmp_SetThreadGroupAffinity;
612#endif /* KMP_OS_WINDOWS */
613
614#if KMP_USE_HWLOC
615extern hwloc_topology_t __kmp_hwloc_topology;
616extern int __kmp_hwloc_error;
617extern int __kmp_numa_detected;
618extern int __kmp_tile_depth;
619#endif
620
621extern size_t __kmp_affin_mask_size;
622#define KMP_AFFINITY_CAPABLE() (__kmp_affin_mask_size > 0)
623#define KMP_AFFINITY_DISABLE() (__kmp_affin_mask_size = 0)
624#define KMP_AFFINITY_ENABLE(mask_size) (__kmp_affin_mask_size = mask_size)
625#define KMP_CPU_SET_ITERATE(i, mask) \
626 for (i = (mask)->begin(); (int)i != (mask)->end(); i = (mask)->next(i))
627#define KMP_CPU_SET(i, mask) (mask)->set(i)
628#define KMP_CPU_ISSET(i, mask) (mask)->is_set(i)
629#define KMP_CPU_CLR(i, mask) (mask)->clear(i)
630#define KMP_CPU_ZERO(mask) (mask)->zero()
631#define KMP_CPU_COPY(dest, src) (dest)->copy(src)
632#define KMP_CPU_AND(dest, src) (dest)->bitwise_and(src)
633#define KMP_CPU_COMPLEMENT(max_bit_number, mask) (mask)->bitwise_not()
634#define KMP_CPU_UNION(dest, src) (dest)->bitwise_or(src)
635#define KMP_CPU_ALLOC(ptr) (ptr = __kmp_affinity_dispatch->allocate_mask())
636#define KMP_CPU_FREE(ptr) __kmp_affinity_dispatch->deallocate_mask(ptr)
637#define KMP_CPU_ALLOC_ON_STACK(ptr) KMP_CPU_ALLOC(ptr)
638#define KMP_CPU_FREE_FROM_STACK(ptr) KMP_CPU_FREE(ptr)
639#define KMP_CPU_INTERNAL_ALLOC(ptr) KMP_CPU_ALLOC(ptr)
640#define KMP_CPU_INTERNAL_FREE(ptr) KMP_CPU_FREE(ptr)
641#define KMP_CPU_INDEX(arr, i) __kmp_affinity_dispatch->index_mask_array(arr, i)
642#define KMP_CPU_ALLOC_ARRAY(arr, n) \
643 (arr = __kmp_affinity_dispatch->allocate_mask_array(n))
644#define KMP_CPU_FREE_ARRAY(arr, n) \
645 __kmp_affinity_dispatch->deallocate_mask_array(arr)
646#define KMP_CPU_INTERNAL_ALLOC_ARRAY(arr, n) KMP_CPU_ALLOC_ARRAY(arr, n)
647#define KMP_CPU_INTERNAL_FREE_ARRAY(arr, n) KMP_CPU_FREE_ARRAY(arr, n)
648#define __kmp_get_system_affinity(mask, abort_bool) \
649 (mask)->get_system_affinity(abort_bool)
650#define __kmp_set_system_affinity(mask, abort_bool) \
651 (mask)->set_system_affinity(abort_bool)
652#define __kmp_get_proc_group(mask) (mask)->get_proc_group()
653
654class KMPAffinity {
655public:
656 class Mask {
657 public:
658 void *operator new(size_t n);
659 void operator delete(void *p);
660 void *operator new[](size_t n);
661 void operator delete[](void *p);
662 virtual ~Mask() {}
663 // Set bit i to 1
664 virtual void set(int i) {}
665 // Return bit i
666 virtual bool is_set(int i) const { return false; }
667 // Set bit i to 0
668 virtual void clear(int i) {}
669 // Zero out entire mask
670 virtual void zero() {}
671 // Copy src into this mask
672 virtual void copy(const Mask *src) {}
673 // this &= rhs
674 virtual void bitwise_and(const Mask *rhs) {}
675 // this |= rhs
676 virtual void bitwise_or(const Mask *rhs) {}
677 // this = ~this
678 virtual void bitwise_not() {}
679 // API for iterating over an affinity mask
680 // for (int i = mask->begin(); i != mask->end(); i = mask->next(i))
681 virtual int begin() const { return 0; }
682 virtual int end() const { return 0; }
683 virtual int next(int previous) const { return 0; }
684 // Set the system's affinity to this affinity mask's value
685 virtual int set_system_affinity(bool abort_on_error) const { return -1; }
686 // Set this affinity mask to the current system affinity
687 virtual int get_system_affinity(bool abort_on_error) { return -1; }
688 // Only 1 DWORD in the mask should have any procs set.
689 // Return the appropriate index, or -1 for an invalid mask.
690 virtual int get_proc_group() const { return -1; }
691 };
692 void *operator new(size_t n);
693 void operator delete(void *p);
694 // Need virtual destructor
695 virtual ~KMPAffinity() = default;
696 // Determine if affinity is capable
697 virtual void determine_capable(const char *env_var) {}
698 // Bind the current thread to os proc
699 virtual void bind_thread(int proc) {}
700 // Factory functions to allocate/deallocate a mask
701 virtual Mask *allocate_mask() { return nullptr; }
702 virtual void deallocate_mask(Mask *m) {}
703 virtual Mask *allocate_mask_array(int num) { return nullptr; }
704 virtual void deallocate_mask_array(Mask *m) {}
705 virtual Mask *index_mask_array(Mask *m, int index) { return nullptr; }
706 static void pick_api();
707 static void destroy_api();
708 enum api_type {
709 NATIVE_OS
710#if KMP_USE_HWLOC
711 ,
712 HWLOC
713#endif
714 };
715 virtual api_type get_api_type() const {
716 KMP_ASSERT(0);
717 return NATIVE_OS;
718 }
719
720private:
721 static bool picked_api;
722};
723
724typedef KMPAffinity::Mask kmp_affin_mask_t;
725extern KMPAffinity *__kmp_affinity_dispatch;
726
727// Declare local char buffers with this size for printing debug and info
728// messages, using __kmp_affinity_print_mask().
729#define KMP_AFFIN_MASK_PRINT_LEN 1024
730
731enum affinity_type {
732 affinity_none = 0,
733 affinity_physical,
734 affinity_logical,
735 affinity_compact,
736 affinity_scatter,
737 affinity_explicit,
738 affinity_balanced,
739 affinity_disabled, // not used outsize the env var parser
740 affinity_default
741};
742
743enum affinity_gran {
744 affinity_gran_fine = 0,
745 affinity_gran_thread,
746 affinity_gran_core,
747 affinity_gran_tile,
748 affinity_gran_numa,
749 affinity_gran_package,
750 affinity_gran_node,
751#if KMP_GROUP_AFFINITY
752 // The "group" granularity isn't necesssarily coarser than all of the
753 // other levels, but we put it last in the enum.
754 affinity_gran_group,
755#endif /* KMP_GROUP_AFFINITY */
756 affinity_gran_default
757};
758
759enum affinity_top_method {
760 affinity_top_method_all = 0, // try all (supported) methods, in order
761#if KMP_ARCH_X86 || KMP_ARCH_X86_64
762 affinity_top_method_apicid,
763 affinity_top_method_x2apicid,
764#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
765 affinity_top_method_cpuinfo, // KMP_CPUINFO_FILE is usable on Windows* OS, too
766#if KMP_GROUP_AFFINITY
767 affinity_top_method_group,
768#endif /* KMP_GROUP_AFFINITY */
769 affinity_top_method_flat,
770#if KMP_USE_HWLOC
771 affinity_top_method_hwloc,
772#endif
773 affinity_top_method_default
774};
775
776#define affinity_respect_mask_default (-1)
777
778extern enum affinity_type __kmp_affinity_type; /* Affinity type */
779extern enum affinity_gran __kmp_affinity_gran; /* Affinity granularity */
780extern int __kmp_affinity_gran_levels; /* corresponding int value */
781extern int __kmp_affinity_dups; /* Affinity duplicate masks */
782extern enum affinity_top_method __kmp_affinity_top_method;
783extern int __kmp_affinity_compact; /* Affinity 'compact' value */
784extern int __kmp_affinity_offset; /* Affinity offset value */
785extern int __kmp_affinity_verbose; /* Was verbose specified for KMP_AFFINITY? */
786extern int __kmp_affinity_warnings; /* KMP_AFFINITY warnings enabled ? */
787extern int __kmp_affinity_respect_mask; // Respect process' init affinity mask?
788extern char *__kmp_affinity_proclist; /* proc ID list */
789extern kmp_affin_mask_t *__kmp_affinity_masks;
790extern unsigned __kmp_affinity_num_masks;
791extern void __kmp_affinity_bind_thread(int which);
792
793extern kmp_affin_mask_t *__kmp_affin_fullMask;
794extern char *__kmp_cpuinfo_file;
795
796#endif /* KMP_AFFINITY_SUPPORTED */
797
798// This needs to be kept in sync with the values in omp.h !!!
799typedef enum kmp_proc_bind_t {
800 proc_bind_false = 0,
801 proc_bind_true,
802 proc_bind_master,
803 proc_bind_close,
804 proc_bind_spread,
805 proc_bind_intel, // use KMP_AFFINITY interface
806 proc_bind_default
807} kmp_proc_bind_t;
808
809typedef struct kmp_nested_proc_bind_t {
810 kmp_proc_bind_t *bind_types;
811 int size;
812 int used;
813} kmp_nested_proc_bind_t;
814
815extern kmp_nested_proc_bind_t __kmp_nested_proc_bind;
816
817extern int __kmp_display_affinity;
818extern char *__kmp_affinity_format;
819static const size_t KMP_AFFINITY_FORMAT_SIZE = 512;
820
821#if KMP_AFFINITY_SUPPORTED
822#define KMP_PLACE_ALL (-1)
823#define KMP_PLACE_UNDEFINED (-2)
824// Is KMP_AFFINITY is being used instead of OMP_PROC_BIND/OMP_PLACES?
825#define KMP_AFFINITY_NON_PROC_BIND \
826 ((__kmp_nested_proc_bind.bind_types[0] == proc_bind_false || \
827 __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) && \
828 (__kmp_affinity_num_masks > 0 || __kmp_affinity_type == affinity_balanced))
829#endif /* KMP_AFFINITY_SUPPORTED */
830
831extern int __kmp_affinity_num_places;
832
833typedef enum kmp_cancel_kind_t {
834 cancel_noreq = 0,
835 cancel_parallel = 1,
836 cancel_loop = 2,
837 cancel_sections = 3,
838 cancel_taskgroup = 4
839} kmp_cancel_kind_t;
840
841// KMP_HW_SUBSET support:
842typedef struct kmp_hws_item {
843 int num;
844 int offset;
845} kmp_hws_item_t;
846
847extern kmp_hws_item_t __kmp_hws_socket;
848extern kmp_hws_item_t __kmp_hws_node;
849extern kmp_hws_item_t __kmp_hws_tile;
850extern kmp_hws_item_t __kmp_hws_core;
851extern kmp_hws_item_t __kmp_hws_proc;
852extern int __kmp_hws_requested;
853extern int __kmp_hws_abs_flag; // absolute or per-item number requested
854
855/* ------------------------------------------------------------------------ */
856
857#define KMP_PAD(type, sz) \
858 (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1))
859
860// We need to avoid using -1 as a GTID as +1 is added to the gtid
861// when storing it in a lock, and the value 0 is reserved.
862#define KMP_GTID_DNE (-2) /* Does not exist */
863#define KMP_GTID_SHUTDOWN (-3) /* Library is shutting down */
864#define KMP_GTID_MONITOR (-4) /* Monitor thread ID */
865#define KMP_GTID_UNKNOWN (-5) /* Is not known */
866#define KMP_GTID_MIN (-6) /* Minimal gtid for low bound check in DEBUG */
867
868/* OpenMP 5.0 Memory Management support */
869
870#ifndef __OMP_H
871// Duplicate type definitions from omp.h
872typedef uintptr_t omp_uintptr_t;
873
874typedef enum {
875 omp_atk_threadmodel = 1,
876 omp_atk_alignment = 2,
877 omp_atk_access = 3,
878 omp_atk_pool_size = 4,
879 omp_atk_fallback = 5,
880 omp_atk_fb_data = 6,
881 omp_atk_pinned = 7,
882 omp_atk_partition = 8
883} omp_alloctrait_key_t;
884
885typedef enum {
886 omp_atv_false = 0,
887 omp_atv_true = 1,
888 omp_atv_default = 2,
889 omp_atv_contended = 3,
890 omp_atv_uncontended = 4,
891 omp_atv_sequential = 5,
892 omp_atv_private = 6,
893 omp_atv_all = 7,
894 omp_atv_thread = 8,
895 omp_atv_pteam = 9,
896 omp_atv_cgroup = 10,
897 omp_atv_default_mem_fb = 11,
898 omp_atv_null_fb = 12,
899 omp_atv_abort_fb = 13,
900 omp_atv_allocator_fb = 14,
901 omp_atv_environment = 15,
902 omp_atv_nearest = 16,
903 omp_atv_blocked = 17,
904 omp_atv_interleaved = 18
905} omp_alloctrait_value_t;
906
907typedef void *omp_memspace_handle_t;
908extern omp_memspace_handle_t const omp_default_mem_space;
909extern omp_memspace_handle_t const omp_large_cap_mem_space;
910extern omp_memspace_handle_t const omp_const_mem_space;
911extern omp_memspace_handle_t const omp_high_bw_mem_space;
912extern omp_memspace_handle_t const omp_low_lat_mem_space;
913
914typedef struct {
915 omp_alloctrait_key_t key;
916 omp_uintptr_t value;
917} omp_alloctrait_t;
918
919typedef void *omp_allocator_handle_t;
920extern omp_allocator_handle_t const omp_null_allocator;
921extern omp_allocator_handle_t const omp_default_mem_alloc;
922extern omp_allocator_handle_t const omp_large_cap_mem_alloc;
923extern omp_allocator_handle_t const omp_const_mem_alloc;
924extern omp_allocator_handle_t const omp_high_bw_mem_alloc;
925extern omp_allocator_handle_t const omp_low_lat_mem_alloc;
926extern omp_allocator_handle_t const omp_cgroup_mem_alloc;
927extern omp_allocator_handle_t const omp_pteam_mem_alloc;
928extern omp_allocator_handle_t const omp_thread_mem_alloc;
929extern omp_allocator_handle_t const kmp_max_mem_alloc;
930extern omp_allocator_handle_t __kmp_def_allocator;
931
932// end of duplicate type definitions from omp.h
933#endif
934
935extern int __kmp_memkind_available;
936
937typedef omp_memspace_handle_t kmp_memspace_t; // placeholder
938
939typedef struct kmp_allocator_t {
940 omp_memspace_handle_t memspace;
941 void **memkind; // pointer to memkind
942 int alignment;
943 omp_alloctrait_value_t fb;
944 kmp_allocator_t *fb_data;
945 kmp_uint64 pool_size;
946 kmp_uint64 pool_used;
947} kmp_allocator_t;
948
949extern omp_allocator_handle_t __kmpc_init_allocator(int gtid,
950 omp_memspace_handle_t,
951 int ntraits,
952 omp_alloctrait_t traits[]);
953extern void __kmpc_destroy_allocator(int gtid, omp_allocator_handle_t al);
954extern void __kmpc_set_default_allocator(int gtid, omp_allocator_handle_t al);
955extern omp_allocator_handle_t __kmpc_get_default_allocator(int gtid);
956extern void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al);
957extern void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
958
959extern void __kmp_init_memkind();
960extern void __kmp_fini_memkind();
961
962/* ------------------------------------------------------------------------ */
963
964#define KMP_UINT64_MAX \
965 (~((kmp_uint64)1 << ((sizeof(kmp_uint64) * (1 << 3)) - 1)))
966
967#define KMP_MIN_NTH 1
968
969#ifndef KMP_MAX_NTH
970#if defined(PTHREAD_THREADS_MAX) && PTHREAD_THREADS_MAX < INT_MAX
971#define KMP_MAX_NTH PTHREAD_THREADS_MAX
972#else
973#define KMP_MAX_NTH INT_MAX
974#endif
975#endif /* KMP_MAX_NTH */
976
977#ifdef PTHREAD_STACK_MIN
978#define KMP_MIN_STKSIZE PTHREAD_STACK_MIN
979#else
980#define KMP_MIN_STKSIZE ((size_t)(32 * 1024))
981#endif
982
983#define KMP_MAX_STKSIZE (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
984
985#if KMP_ARCH_X86
986#define KMP_DEFAULT_STKSIZE ((size_t)(2 * 1024 * 1024))
987#elif KMP_ARCH_X86_64
988#define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
989#define KMP_BACKUP_STKSIZE ((size_t)(2 * 1024 * 1024))
990#else
991#define KMP_DEFAULT_STKSIZE ((size_t)(1024 * 1024))
992#endif
993
994#define KMP_DEFAULT_MALLOC_POOL_INCR ((size_t)(1024 * 1024))
995#define KMP_MIN_MALLOC_POOL_INCR ((size_t)(4 * 1024))
996#define KMP_MAX_MALLOC_POOL_INCR \
997 (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
998
999#define KMP_MIN_STKOFFSET (0)
1000#define KMP_MAX_STKOFFSET KMP_MAX_STKSIZE
1001#if KMP_OS_DARWIN
1002#define KMP_DEFAULT_STKOFFSET KMP_MIN_STKOFFSET
1003#else
1004#define KMP_DEFAULT_STKOFFSET CACHE_LINE
1005#endif
1006
1007#define KMP_MIN_STKPADDING (0)
1008#define KMP_MAX_STKPADDING (2 * 1024 * 1024)
1009
1010#define KMP_BLOCKTIME_MULTIPLIER \
1011 (1000) /* number of blocktime units per second */
1012#define KMP_MIN_BLOCKTIME (0)
1013#define KMP_MAX_BLOCKTIME \
1014 (INT_MAX) /* Must be this for "infinite" setting the work */
1015#define KMP_DEFAULT_BLOCKTIME (200) /* __kmp_blocktime is in milliseconds */
1016
1017#if KMP_USE_MONITOR
1018#define KMP_DEFAULT_MONITOR_STKSIZE ((size_t)(64 * 1024))
1019#define KMP_MIN_MONITOR_WAKEUPS (1) // min times monitor wakes up per second
1020#define KMP_MAX_MONITOR_WAKEUPS (1000) // max times monitor can wake up per sec
1021
1022/* Calculate new number of monitor wakeups for a specific block time based on
1023 previous monitor_wakeups. Only allow increasing number of wakeups */
1024#define KMP_WAKEUPS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
1025 (((blocktime) == KMP_MAX_BLOCKTIME) \
1026 ? (monitor_wakeups) \
1027 : ((blocktime) == KMP_MIN_BLOCKTIME) \
1028 ? KMP_MAX_MONITOR_WAKEUPS \
1029 : ((monitor_wakeups) > (KMP_BLOCKTIME_MULTIPLIER / (blocktime))) \
1030 ? (monitor_wakeups) \
1031 : (KMP_BLOCKTIME_MULTIPLIER) / (blocktime))
1032
1033/* Calculate number of intervals for a specific block time based on
1034 monitor_wakeups */
1035#define KMP_INTERVALS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
1036 (((blocktime) + (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)) - 1) / \
1037 (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)))
1038#else
1039#define KMP_BLOCKTIME(team, tid) \
1040 (get__bt_set(team, tid) ? get__blocktime(team, tid) : __kmp_dflt_blocktime)
1041#if KMP_OS_UNIX && (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1042// HW TSC is used to reduce overhead (clock tick instead of nanosecond).
1043extern kmp_uint64 __kmp_ticks_per_msec;
1044#if KMP_COMPILER_ICC
1045#define KMP_NOW() ((kmp_uint64)_rdtsc())
1046#else
1047#define KMP_NOW() __kmp_hardware_timestamp()
1048#endif
1049#define KMP_NOW_MSEC() (KMP_NOW() / __kmp_ticks_per_msec)
1050#define KMP_BLOCKTIME_INTERVAL(team, tid) \
1051 (KMP_BLOCKTIME(team, tid) * __kmp_ticks_per_msec)
1052#define KMP_BLOCKING(goal, count) ((goal) > KMP_NOW())
1053#else
1054// System time is retrieved sporadically while blocking.
1055extern kmp_uint64 __kmp_now_nsec();
1056#define KMP_NOW() __kmp_now_nsec()
1057#define KMP_NOW_MSEC() (KMP_NOW() / KMP_USEC_PER_SEC)
1058#define KMP_BLOCKTIME_INTERVAL(team, tid) \
1059 (KMP_BLOCKTIME(team, tid) * KMP_USEC_PER_SEC)
1060#define KMP_BLOCKING(goal, count) ((count) % 1000 != 0 || (goal) > KMP_NOW())
1061#endif
1062#endif // KMP_USE_MONITOR
1063
1064#define KMP_MIN_STATSCOLS 40
1065#define KMP_MAX_STATSCOLS 4096
1066#define KMP_DEFAULT_STATSCOLS 80
1067
1068#define KMP_MIN_INTERVAL 0
1069#define KMP_MAX_INTERVAL (INT_MAX - 1)
1070#define KMP_DEFAULT_INTERVAL 0
1071
1072#define KMP_MIN_CHUNK 1
1073#define KMP_MAX_CHUNK (INT_MAX - 1)
1074#define KMP_DEFAULT_CHUNK 1
1075
1076#define KMP_DFLT_DISP_NUM_BUFF 7
1077#define KMP_MAX_ORDERED 8
1078
1079#define KMP_MAX_FIELDS 32
1080
1081#define KMP_MAX_BRANCH_BITS 31
1082
1083#define KMP_MAX_ACTIVE_LEVELS_LIMIT INT_MAX
1084
1085#define KMP_MAX_DEFAULT_DEVICE_LIMIT INT_MAX
1086
1087#define KMP_MAX_TASK_PRIORITY_LIMIT INT_MAX
1088
1089/* Minimum number of threads before switch to TLS gtid (experimentally
1090 determined) */
1091/* josh TODO: what about OS X* tuning? */
1092#if KMP_ARCH_X86 || KMP_ARCH_X86_64
1093#define KMP_TLS_GTID_MIN 5
1094#else
1095#define KMP_TLS_GTID_MIN INT_MAX
1096#endif
1097
1098#define KMP_MASTER_TID(tid) ((tid) == 0)
1099#define KMP_WORKER_TID(tid) ((tid) != 0)
1100
1101#define KMP_MASTER_GTID(gtid) (__kmp_tid_from_gtid((gtid)) == 0)
1102#define KMP_WORKER_GTID(gtid) (__kmp_tid_from_gtid((gtid)) != 0)
1103#define KMP_INITIAL_GTID(gtid) ((gtid) == 0)
1104
1105#ifndef TRUE
1106#define FALSE 0
1107#define TRUE (!FALSE)
1108#endif
1109
1110/* NOTE: all of the following constants must be even */
1111
1112#if KMP_OS_WINDOWS
1113#define KMP_INIT_WAIT 64U /* initial number of spin-tests */
1114#define KMP_NEXT_WAIT 32U /* susequent number of spin-tests */
1115#elif KMP_OS_CNK
1116#define KMP_INIT_WAIT 16U /* initial number of spin-tests */
1117#define KMP_NEXT_WAIT 8U /* susequent number of spin-tests */
1118#elif KMP_OS_LINUX
1119#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1120#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1121#elif KMP_OS_DARWIN
1122/* TODO: tune for KMP_OS_DARWIN */
1123#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1124#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1125#elif KMP_OS_DRAGONFLY
1126/* TODO: tune for KMP_OS_DRAGONFLY */
1127#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1128#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1129#elif KMP_OS_FREEBSD
1130/* TODO: tune for KMP_OS_FREEBSD */
1131#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1132#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1133#elif KMP_OS_NETBSD
1134/* TODO: tune for KMP_OS_NETBSD */
1135#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1136#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1137#elif KMP_OS_HURD
1138/* TODO: tune for KMP_OS_HURD */
1139#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1140#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1141#elif KMP_OS_OPENBSD
1142/* TODO: tune for KMP_OS_OPENBSD */
1143#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1144#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1145#endif
1146
1147#if KMP_ARCH_X86 || KMP_ARCH_X86_64
1148typedef struct kmp_cpuid {
1149 kmp_uint32 eax;
1150 kmp_uint32 ebx;
1151 kmp_uint32 ecx;
1152 kmp_uint32 edx;
1153} kmp_cpuid_t;
1154
1155typedef struct kmp_cpuinfo {
1156 int initialized; // If 0, other fields are not initialized.
1157 int signature; // CPUID(1).EAX
1158 int family; // CPUID(1).EAX[27:20]+CPUID(1).EAX[11:8] (Extended Family+Family)
1159 int model; // ( CPUID(1).EAX[19:16] << 4 ) + CPUID(1).EAX[7:4] ( ( Extended
1160 // Model << 4 ) + Model)
1161 int stepping; // CPUID(1).EAX[3:0] ( Stepping )
1162 int sse2; // 0 if SSE2 instructions are not supported, 1 otherwise.
1163 int rtm; // 0 if RTM instructions are not supported, 1 otherwise.
1164 int cpu_stackoffset;
1165 int apic_id;
1166 int physical_id;
1167 int logical_id;
1168 kmp_uint64 frequency; // Nominal CPU frequency in Hz.
1169 char name[3 * sizeof(kmp_cpuid_t)]; // CPUID(0x80000002,0x80000003,0x80000004)
1170} kmp_cpuinfo_t;
1171
1172extern void __kmp_query_cpuid(kmp_cpuinfo_t *p);
1173
1174#if KMP_OS_UNIX
1175// subleaf is only needed for cache and topology discovery and can be set to
1176// zero in most cases
1177static inline void __kmp_x86_cpuid(int leaf, int subleaf, struct kmp_cpuid *p) {
1178 __asm__ __volatile__("cpuid"
1179 : "=a"(p->eax), "=b"(p->ebx), "=c"(p->ecx), "=d"(p->edx)
1180 : "a"(leaf), "c"(subleaf));
1181}
1182// Load p into FPU control word
1183static inline void __kmp_load_x87_fpu_control_word(const kmp_int16 *p) {
1184 __asm__ __volatile__("fldcw %0" : : "m"(*p));
1185}
1186// Store FPU control word into p
1187static inline void __kmp_store_x87_fpu_control_word(kmp_int16 *p) {
1188 __asm__ __volatile__("fstcw %0" : "=m"(*p));
1189}
1190static inline void __kmp_clear_x87_fpu_status_word() {
1191#if KMP_MIC
1192 // 32-bit protected mode x87 FPU state
1193 struct x87_fpu_state {
1194 unsigned cw;
1195 unsigned sw;
1196 unsigned tw;
1197 unsigned fip;
1198 unsigned fips;
1199 unsigned fdp;
1200 unsigned fds;
1201 };
1202 struct x87_fpu_state fpu_state = {0, 0, 0, 0, 0, 0, 0};
1203 __asm__ __volatile__("fstenv %0\n\t" // store FP env
1204 "andw $0x7f00, %1\n\t" // clear 0-7,15 bits of FP SW
1205 "fldenv %0\n\t" // load FP env back
1206 : "+m"(fpu_state), "+m"(fpu_state.sw));
1207#else
1208 __asm__ __volatile__("fnclex");
1209#endif // KMP_MIC
1210}
1211#if __SSE__
1212static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1213static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1214#else
1215static inline void __kmp_load_mxcsr(const kmp_uint32 *p) {}
1216static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = 0; }
1217#endif
1218#else
1219// Windows still has these as external functions in assembly file
1220extern void __kmp_x86_cpuid(int mode, int mode2, struct kmp_cpuid *p);
1221extern void __kmp_load_x87_fpu_control_word(const kmp_int16 *p);
1222extern void __kmp_store_x87_fpu_control_word(kmp_int16 *p);
1223extern void __kmp_clear_x87_fpu_status_word();
1224static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1225static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1226#endif // KMP_OS_UNIX
1227
1228#define KMP_X86_MXCSR_MASK 0xffffffc0 /* ignore status flags (6 lsb) */
1229
1230#if KMP_ARCH_X86
1231extern void __kmp_x86_pause(void);
1232#elif KMP_MIC
1233// Performance testing on KNC (C0QS-7120 P/A/X/D, 61-core, 16 GB Memory) showed
1234// regression after removal of extra PAUSE from spin loops. Changing
1235// the delay from 100 to 300 showed even better performance than double PAUSE
1236// on Spec OMP2001 and LCPC tasking tests, no regressions on EPCC.
1237static inline void __kmp_x86_pause(void) { _mm_delay_32(300); }
1238#else
1239static inline void __kmp_x86_pause(void) { _mm_pause(); }
1240#endif
1241#define KMP_CPU_PAUSE() __kmp_x86_pause()
1242#elif KMP_ARCH_PPC64
1243#define KMP_PPC64_PRI_LOW() __asm__ volatile("or 1, 1, 1")
1244#define KMP_PPC64_PRI_MED() __asm__ volatile("or 2, 2, 2")
1245#define KMP_PPC64_PRI_LOC_MB() __asm__ volatile("" : : : "memory")
1246#define KMP_CPU_PAUSE() \
1247 do { \
1248 KMP_PPC64_PRI_LOW(); \
1249 KMP_PPC64_PRI_MED(); \
1250 KMP_PPC64_PRI_LOC_MB(); \
1251 } while (0)
1252#else
1253#define KMP_CPU_PAUSE() /* nothing to do */
1254#endif
1255
1256#define KMP_INIT_YIELD(count) \
1257 { (count) = __kmp_yield_init; }
1258
1259#define KMP_OVERSUBSCRIBED \
1260 (TCR_4(__kmp_nth) > (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc))
1261
1262#define KMP_TRY_YIELD \
1263 ((__kmp_use_yield == 1) || (__kmp_use_yield == 2 && (KMP_OVERSUBSCRIBED)))
1264
1265#define KMP_TRY_YIELD_OVERSUB \
1266 ((__kmp_use_yield == 1 || __kmp_use_yield == 2) && (KMP_OVERSUBSCRIBED))
1267
1268#define KMP_YIELD(cond) \
1269 { \
1270 KMP_CPU_PAUSE(); \
1271 if ((cond) && (KMP_TRY_YIELD)) \
1272 __kmp_yield(); \
1273 }
1274
1275#define KMP_YIELD_OVERSUB() \
1276 { \
1277 KMP_CPU_PAUSE(); \
1278 if ((KMP_TRY_YIELD_OVERSUB)) \
1279 __kmp_yield(); \
1280 }
1281
1282// Note the decrement of 2 in the following Macros. With KMP_LIBRARY=turnaround,
1283// there should be no yielding since initial value from KMP_INIT_YIELD() is odd.
1284#define KMP_YIELD_SPIN(count) \
1285 { \
1286 KMP_CPU_PAUSE(); \
1287 if (KMP_TRY_YIELD) { \
1288 (count) -= 2; \
1289 if (!(count)) { \
1290 __kmp_yield(); \
1291 (count) = __kmp_yield_next; \
1292 } \
1293 } \
1294 }
1295
1296#define KMP_YIELD_OVERSUB_ELSE_SPIN(count) \
1297 { \
1298 KMP_CPU_PAUSE(); \
1299 if ((KMP_TRY_YIELD_OVERSUB)) \
1300 __kmp_yield(); \
1301 else if (__kmp_use_yield == 1) { \
1302 (count) -= 2; \
1303 if (!(count)) { \
1304 __kmp_yield(); \
1305 (count) = __kmp_yield_next; \
1306 } \
1307 } \
1308 }
1309
1310/* ------------------------------------------------------------------------ */
1311/* Support datatypes for the orphaned construct nesting checks. */
1312/* ------------------------------------------------------------------------ */
1313
1314enum cons_type {
1315 ct_none,
1316 ct_parallel,
1317 ct_pdo,
1318 ct_pdo_ordered,
1319 ct_psections,
1320 ct_psingle,
1321 ct_critical,
1322 ct_ordered_in_parallel,
1323 ct_ordered_in_pdo,
1324 ct_master,
1325 ct_reduce,
1326 ct_barrier
1327};
1328
1329#define IS_CONS_TYPE_ORDERED(ct) ((ct) == ct_pdo_ordered)
1330
1331struct cons_data {
1332 ident_t const *ident;
1333 enum cons_type type;
1334 int prev;
1335 kmp_user_lock_p
1336 name; /* address exclusively for critical section name comparison */
1337};
1338
1339struct cons_header {
1340 int p_top, w_top, s_top;
1341 int stack_size, stack_top;
1342 struct cons_data *stack_data;
1343};
1344
1345struct kmp_region_info {
1346 char *text;
1347 int offset[KMP_MAX_FIELDS];
1348 int length[KMP_MAX_FIELDS];
1349};
1350
1351/* ---------------------------------------------------------------------- */
1352/* ---------------------------------------------------------------------- */
1353
1354#if KMP_OS_WINDOWS
1355typedef HANDLE kmp_thread_t;
1356typedef DWORD kmp_key_t;
1357#endif /* KMP_OS_WINDOWS */
1358
1359#if KMP_OS_UNIX
1360typedef pthread_t kmp_thread_t;
1361typedef pthread_key_t kmp_key_t;
1362#endif
1363
1364extern kmp_key_t __kmp_gtid_threadprivate_key;
1365
1366typedef struct kmp_sys_info {
1367 long maxrss; /* the maximum resident set size utilized (in kilobytes) */
1368 long minflt; /* the number of page faults serviced without any I/O */
1369 long majflt; /* the number of page faults serviced that required I/O */
1370 long nswap; /* the number of times a process was "swapped" out of memory */
1371 long inblock; /* the number of times the file system had to perform input */
1372 long oublock; /* the number of times the file system had to perform output */
1373 long nvcsw; /* the number of times a context switch was voluntarily */
1374 long nivcsw; /* the number of times a context switch was forced */
1375} kmp_sys_info_t;
1376
1377#if USE_ITT_BUILD
1378// We cannot include "kmp_itt.h" due to circular dependency. Declare the only
1379// required type here. Later we will check the type meets requirements.
1380typedef int kmp_itt_mark_t;
1381#define KMP_ITT_DEBUG 0
1382#endif /* USE_ITT_BUILD */
1383
1384typedef kmp_int32 kmp_critical_name[8];
1385
1395typedef void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid, ...);
1396typedef void (*kmpc_micro_bound)(kmp_int32 *bound_tid, kmp_int32 *bound_nth,
1397 ...);
1398
1403/* ---------------------------------------------------------------------------
1404 */
1405/* Threadprivate initialization/finalization function declarations */
1406
1407/* for non-array objects: __kmpc_threadprivate_register() */
1408
1413typedef void *(*kmpc_ctor)(void *);
1414
1419typedef void (*kmpc_dtor)(
1420 void * /*, size_t */); /* 2nd arg: magic number for KCC unused by Intel
1421 compiler */
1426typedef void *(*kmpc_cctor)(void *, void *);
1427
1428/* for array objects: __kmpc_threadprivate_register_vec() */
1429/* First arg: "this" pointer */
1430/* Last arg: number of array elements */
1436typedef void *(*kmpc_ctor_vec)(void *, size_t);
1442typedef void (*kmpc_dtor_vec)(void *, size_t);
1448typedef void *(*kmpc_cctor_vec)(void *, void *,
1449 size_t); /* function unused by compiler */
1450
1455/* keeps tracked of threadprivate cache allocations for cleanup later */
1456typedef struct kmp_cached_addr {
1457 void **addr; /* address of allocated cache */
1458 void ***compiler_cache; /* pointer to compiler's cache */
1459 void *data; /* pointer to global data */
1460 struct kmp_cached_addr *next; /* pointer to next cached address */
1461} kmp_cached_addr_t;
1462
1463struct private_data {
1464 struct private_data *next; /* The next descriptor in the list */
1465 void *data; /* The data buffer for this descriptor */
1466 int more; /* The repeat count for this descriptor */
1467 size_t size; /* The data size for this descriptor */
1468};
1469
1470struct private_common {
1471 struct private_common *next;
1472 struct private_common *link;
1473 void *gbl_addr;
1474 void *par_addr; /* par_addr == gbl_addr for MASTER thread */
1475 size_t cmn_size;
1476};
1477
1478struct shared_common {
1479 struct shared_common *next;
1480 struct private_data *pod_init;
1481 void *obj_init;
1482 void *gbl_addr;
1483 union {
1484 kmpc_ctor ctor;
1485 kmpc_ctor_vec ctorv;
1486 } ct;
1487 union {
1488 kmpc_cctor cctor;
1489 kmpc_cctor_vec cctorv;
1490 } cct;
1491 union {
1492 kmpc_dtor dtor;
1493 kmpc_dtor_vec dtorv;
1494 } dt;
1495 size_t vec_len;
1496 int is_vec;
1497 size_t cmn_size;
1498};
1499
1500#define KMP_HASH_TABLE_LOG2 9 /* log2 of the hash table size */
1501#define KMP_HASH_TABLE_SIZE \
1502 (1 << KMP_HASH_TABLE_LOG2) /* size of the hash table */
1503#define KMP_HASH_SHIFT 3 /* throw away this many low bits from the address */
1504#define KMP_HASH(x) \
1505 ((((kmp_uintptr_t)x) >> KMP_HASH_SHIFT) & (KMP_HASH_TABLE_SIZE - 1))
1506
1507struct common_table {
1508 struct private_common *data[KMP_HASH_TABLE_SIZE];
1509};
1510
1511struct shared_table {
1512 struct shared_common *data[KMP_HASH_TABLE_SIZE];
1513};
1514
1515/* ------------------------------------------------------------------------ */
1516
1517#if KMP_USE_HIER_SCHED
1518// Shared barrier data that exists inside a single unit of the scheduling
1519// hierarchy
1520typedef struct kmp_hier_private_bdata_t {
1521 kmp_int32 num_active;
1522 kmp_uint64 index;
1523 kmp_uint64 wait_val[2];
1524} kmp_hier_private_bdata_t;
1525#endif
1526
1527typedef struct kmp_sched_flags {
1528 unsigned ordered : 1;
1529 unsigned nomerge : 1;
1530 unsigned contains_last : 1;
1531#if KMP_USE_HIER_SCHED
1532 unsigned use_hier : 1;
1533 unsigned unused : 28;
1534#else
1535 unsigned unused : 29;
1536#endif
1537} kmp_sched_flags_t;
1538
1539KMP_BUILD_ASSERT(sizeof(kmp_sched_flags_t) == 4);
1540
1541#if KMP_STATIC_STEAL_ENABLED
1542typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1543 kmp_int32 count;
1544 kmp_int32 ub;
1545 /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1546 kmp_int32 lb;
1547 kmp_int32 st;
1548 kmp_int32 tc;
1549 kmp_int32 static_steal_counter; /* for static_steal only; maybe better to put
1550 after ub */
1551 kmp_lock_t *th_steal_lock; // lock used for chunk stealing
1552 // KMP_ALIGN( 16 ) ensures ( if the KMP_ALIGN macro is turned on )
1553 // a) parm3 is properly aligned and
1554 // b) all parm1-4 are in the same cache line.
1555 // Because of parm1-4 are used together, performance seems to be better
1556 // if they are in the same line (not measured though).
1557
1558 struct KMP_ALIGN(32) { // AC: changed 16 to 32 in order to simplify template
1559 kmp_int32 parm1; // structures in kmp_dispatch.cpp. This should
1560 kmp_int32 parm2; // make no real change at least while padding is off.
1561 kmp_int32 parm3;
1562 kmp_int32 parm4;
1563 };
1564
1565 kmp_uint32 ordered_lower;
1566 kmp_uint32 ordered_upper;
1567#if KMP_OS_WINDOWS
1568 // This var can be placed in the hole between 'tc' and 'parm1', instead of
1569 // 'static_steal_counter'. It would be nice to measure execution times.
1570 // Conditional if/endif can be removed at all.
1571 kmp_int32 last_upper;
1572#endif /* KMP_OS_WINDOWS */
1573} dispatch_private_info32_t;
1574
1575typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1576 kmp_int64 count; // current chunk number for static & static-steal scheduling
1577 kmp_int64 ub; /* upper-bound */
1578 /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1579 kmp_int64 lb; /* lower-bound */
1580 kmp_int64 st; /* stride */
1581 kmp_int64 tc; /* trip count (number of iterations) */
1582 kmp_int64 static_steal_counter; /* for static_steal only; maybe better to put
1583 after ub */
1584 kmp_lock_t *th_steal_lock; // lock used for chunk stealing
1585 /* parm[1-4] are used in different ways by different scheduling algorithms */
1586
1587 // KMP_ALIGN( 32 ) ensures ( if the KMP_ALIGN macro is turned on )
1588 // a) parm3 is properly aligned and
1589 // b) all parm1-4 are in the same cache line.
1590 // Because of parm1-4 are used together, performance seems to be better
1591 // if they are in the same line (not measured though).
1592
1593 struct KMP_ALIGN(32) {
1594 kmp_int64 parm1;
1595 kmp_int64 parm2;
1596 kmp_int64 parm3;
1597 kmp_int64 parm4;
1598 };
1599
1600 kmp_uint64 ordered_lower;
1601 kmp_uint64 ordered_upper;
1602#if KMP_OS_WINDOWS
1603 // This var can be placed in the hole between 'tc' and 'parm1', instead of
1604 // 'static_steal_counter'. It would be nice to measure execution times.
1605 // Conditional if/endif can be removed at all.
1606 kmp_int64 last_upper;
1607#endif /* KMP_OS_WINDOWS */
1608} dispatch_private_info64_t;
1609#else /* KMP_STATIC_STEAL_ENABLED */
1610typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1611 kmp_int32 lb;
1612 kmp_int32 ub;
1613 kmp_int32 st;
1614 kmp_int32 tc;
1615
1616 kmp_int32 parm1;
1617 kmp_int32 parm2;
1618 kmp_int32 parm3;
1619 kmp_int32 parm4;
1620
1621 kmp_int32 count;
1622
1623 kmp_uint32 ordered_lower;
1624 kmp_uint32 ordered_upper;
1625#if KMP_OS_WINDOWS
1626 kmp_int32 last_upper;
1627#endif /* KMP_OS_WINDOWS */
1628} dispatch_private_info32_t;
1629
1630typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1631 kmp_int64 lb; /* lower-bound */
1632 kmp_int64 ub; /* upper-bound */
1633 kmp_int64 st; /* stride */
1634 kmp_int64 tc; /* trip count (number of iterations) */
1635
1636 /* parm[1-4] are used in different ways by different scheduling algorithms */
1637 kmp_int64 parm1;
1638 kmp_int64 parm2;
1639 kmp_int64 parm3;
1640 kmp_int64 parm4;
1641
1642 kmp_int64 count; /* current chunk number for static scheduling */
1643
1644 kmp_uint64 ordered_lower;
1645 kmp_uint64 ordered_upper;
1646#if KMP_OS_WINDOWS
1647 kmp_int64 last_upper;
1648#endif /* KMP_OS_WINDOWS */
1649} dispatch_private_info64_t;
1650#endif /* KMP_STATIC_STEAL_ENABLED */
1651
1652typedef struct KMP_ALIGN_CACHE dispatch_private_info {
1653 union private_info {
1654 dispatch_private_info32_t p32;
1655 dispatch_private_info64_t p64;
1656 } u;
1657 enum sched_type schedule; /* scheduling algorithm */
1658 kmp_sched_flags_t flags; /* flags (e.g., ordered, nomerge, etc.) */
1659 kmp_int32 ordered_bumped;
1660 // To retain the structure size after making ordered_iteration scalar
1661 kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 3];
1662 // Stack of buffers for nest of serial regions
1663 struct dispatch_private_info *next;
1664 kmp_int32 type_size; /* the size of types in private_info */
1665#if KMP_USE_HIER_SCHED
1666 kmp_int32 hier_id;
1667 void *parent; /* hierarchical scheduling parent pointer */
1668#endif
1669 enum cons_type pushed_ws;
1670} dispatch_private_info_t;
1671
1672typedef struct dispatch_shared_info32 {
1673 /* chunk index under dynamic, number of idle threads under static-steal;
1674 iteration index otherwise */
1675 volatile kmp_uint32 iteration;
1676 volatile kmp_uint32 num_done;
1677 volatile kmp_uint32 ordered_iteration;
1678 // Dummy to retain the structure size after making ordered_iteration scalar
1679 kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 1];
1680} dispatch_shared_info32_t;
1681
1682typedef struct dispatch_shared_info64 {
1683 /* chunk index under dynamic, number of idle threads under static-steal;
1684 iteration index otherwise */
1685 volatile kmp_uint64 iteration;
1686 volatile kmp_uint64 num_done;
1687 volatile kmp_uint64 ordered_iteration;
1688 // Dummy to retain the structure size after making ordered_iteration scalar
1689 kmp_int64 ordered_dummy[KMP_MAX_ORDERED - 3];
1690} dispatch_shared_info64_t;
1691
1692typedef struct dispatch_shared_info {
1693 union shared_info {
1694 dispatch_shared_info32_t s32;
1695 dispatch_shared_info64_t s64;
1696 } u;
1697 volatile kmp_uint32 buffer_index;
1698 volatile kmp_int32 doacross_buf_idx; // teamwise index
1699 volatile kmp_uint32 *doacross_flags; // shared array of iteration flags (0/1)
1700 kmp_int32 doacross_num_done; // count finished threads
1701#if KMP_USE_HIER_SCHED
1702 void *hier;
1703#endif
1704#if KMP_USE_HWLOC
1705 // When linking with libhwloc, the ORDERED EPCC test slows down on big
1706 // machines (> 48 cores). Performance analysis showed that a cache thrash
1707 // was occurring and this padding helps alleviate the problem.
1708 char padding[64];
1709#endif
1710} dispatch_shared_info_t;
1711
1712typedef struct kmp_disp {
1713 /* Vector for ORDERED SECTION */
1714 void (*th_deo_fcn)(int *gtid, int *cid, ident_t *);
1715 /* Vector for END ORDERED SECTION */
1716 void (*th_dxo_fcn)(int *gtid, int *cid, ident_t *);
1717
1718 dispatch_shared_info_t *th_dispatch_sh_current;
1719 dispatch_private_info_t *th_dispatch_pr_current;
1720
1721 dispatch_private_info_t *th_disp_buffer;
1722 kmp_int32 th_disp_index;
1723 kmp_int32 th_doacross_buf_idx; // thread's doacross buffer index
1724 volatile kmp_uint32 *th_doacross_flags; // pointer to shared array of flags
1725 kmp_int64 *th_doacross_info; // info on loop bounds
1726#if KMP_USE_INTERNODE_ALIGNMENT
1727 char more_padding[INTERNODE_CACHE_LINE];
1728#endif
1729} kmp_disp_t;
1730
1731/* ------------------------------------------------------------------------ */
1732/* Barrier stuff */
1733
1734/* constants for barrier state update */
1735#define KMP_INIT_BARRIER_STATE 0 /* should probably start from zero */
1736#define KMP_BARRIER_SLEEP_BIT 0 /* bit used for suspend/sleep part of state */
1737#define KMP_BARRIER_UNUSED_BIT 1 // bit that must never be set for valid state
1738#define KMP_BARRIER_BUMP_BIT 2 /* lsb used for bump of go/arrived state */
1739
1740#define KMP_BARRIER_SLEEP_STATE (1 << KMP_BARRIER_SLEEP_BIT)
1741#define KMP_BARRIER_UNUSED_STATE (1 << KMP_BARRIER_UNUSED_BIT)
1742#define KMP_BARRIER_STATE_BUMP (1 << KMP_BARRIER_BUMP_BIT)
1743
1744#if (KMP_BARRIER_SLEEP_BIT >= KMP_BARRIER_BUMP_BIT)
1745#error "Barrier sleep bit must be smaller than barrier bump bit"
1746#endif
1747#if (KMP_BARRIER_UNUSED_BIT >= KMP_BARRIER_BUMP_BIT)
1748#error "Barrier unused bit must be smaller than barrier bump bit"
1749#endif
1750
1751// Constants for release barrier wait state: currently, hierarchical only
1752#define KMP_BARRIER_NOT_WAITING 0 // Normal state; worker not in wait_sleep
1753#define KMP_BARRIER_OWN_FLAG \
1754 1 // Normal state; worker waiting on own b_go flag in release
1755#define KMP_BARRIER_PARENT_FLAG \
1756 2 // Special state; worker waiting on parent's b_go flag in release
1757#define KMP_BARRIER_SWITCH_TO_OWN_FLAG \
1758 3 // Special state; tells worker to shift from parent to own b_go
1759#define KMP_BARRIER_SWITCHING \
1760 4 // Special state; worker resets appropriate flag on wake-up
1761
1762#define KMP_NOT_SAFE_TO_REAP \
1763 0 // Thread th_reap_state: not safe to reap (tasking)
1764#define KMP_SAFE_TO_REAP 1 // Thread th_reap_state: safe to reap (not tasking)
1765
1766enum barrier_type {
1767 bs_plain_barrier = 0, /* 0, All non-fork/join barriers (except reduction
1768 barriers if enabled) */
1769 bs_forkjoin_barrier, /* 1, All fork/join (parallel region) barriers */
1770#if KMP_FAST_REDUCTION_BARRIER
1771 bs_reduction_barrier, /* 2, All barriers that are used in reduction */
1772#endif // KMP_FAST_REDUCTION_BARRIER
1773 bs_last_barrier /* Just a placeholder to mark the end */
1774};
1775
1776// to work with reduction barriers just like with plain barriers
1777#if !KMP_FAST_REDUCTION_BARRIER
1778#define bs_reduction_barrier bs_plain_barrier
1779#endif // KMP_FAST_REDUCTION_BARRIER
1780
1781typedef enum kmp_bar_pat { /* Barrier communication patterns */
1782 bp_linear_bar =
1783 0, /* Single level (degenerate) tree */
1784 bp_tree_bar =
1785 1, /* Balanced tree with branching factor 2^n */
1786 bp_hyper_bar =
1787 2, /* Hypercube-embedded tree with min branching
1788 factor 2^n */
1789 bp_hierarchical_bar = 3, /* Machine hierarchy tree */
1790 bp_last_bar /* Placeholder to mark the end */
1791} kmp_bar_pat_e;
1792
1793#define KMP_BARRIER_ICV_PUSH 1
1794
1795/* Record for holding the values of the internal controls stack records */
1796typedef struct kmp_internal_control {
1797 int serial_nesting_level; /* corresponds to the value of the
1798 th_team_serialized field */
1799 kmp_int8 dynamic; /* internal control for dynamic adjustment of threads (per
1800 thread) */
1801 kmp_int8
1802 bt_set; /* internal control for whether blocktime is explicitly set */
1803 int blocktime; /* internal control for blocktime */
1804#if KMP_USE_MONITOR
1805 int bt_intervals; /* internal control for blocktime intervals */
1806#endif
1807 int nproc; /* internal control for #threads for next parallel region (per
1808 thread) */
1809 int thread_limit; /* internal control for thread-limit-var */
1810 int max_active_levels; /* internal control for max_active_levels */
1811 kmp_r_sched_t
1812 sched; /* internal control for runtime schedule {sched,chunk} pair */
1813 kmp_proc_bind_t proc_bind; /* internal control for affinity */
1814 kmp_int32 default_device; /* internal control for default device */
1815 struct kmp_internal_control *next;
1816} kmp_internal_control_t;
1817
1818static inline void copy_icvs(kmp_internal_control_t *dst,
1819 kmp_internal_control_t *src) {
1820 *dst = *src;
1821}
1822
1823/* Thread barrier needs volatile barrier fields */
1824typedef struct KMP_ALIGN_CACHE kmp_bstate {
1825 // th_fixed_icvs is aligned by virtue of kmp_bstate being aligned (and all
1826 // uses of it). It is not explicitly aligned below, because we *don't* want
1827 // it to be padded -- instead, we fit b_go into the same cache line with
1828 // th_fixed_icvs, enabling NGO cache lines stores in the hierarchical barrier.
1829 kmp_internal_control_t th_fixed_icvs; // Initial ICVs for the thread
1830 // Tuck b_go into end of th_fixed_icvs cache line, so it can be stored with
1831 // same NGO store
1832 volatile kmp_uint64 b_go; // STATE => task should proceed (hierarchical)
1833 KMP_ALIGN_CACHE volatile kmp_uint64
1834 b_arrived; // STATE => task reached synch point.
1835 kmp_uint32 *skip_per_level;
1836 kmp_uint32 my_level;
1837 kmp_int32 parent_tid;
1838 kmp_int32 old_tid;
1839 kmp_uint32 depth;
1840 struct kmp_bstate *parent_bar;
1841 kmp_team_t *team;
1842 kmp_uint64 leaf_state;
1843 kmp_uint32 nproc;
1844 kmp_uint8 base_leaf_kids;
1845 kmp_uint8 leaf_kids;
1846 kmp_uint8 offset;
1847 kmp_uint8 wait_flag;
1848 kmp_uint8 use_oncore_barrier;
1849#if USE_DEBUGGER
1850 // The following field is intended for the debugger solely. Only the worker
1851 // thread itself accesses this field: the worker increases it by 1 when it
1852 // arrives to a barrier.
1853 KMP_ALIGN_CACHE kmp_uint b_worker_arrived;
1854#endif /* USE_DEBUGGER */
1855} kmp_bstate_t;
1856
1857union KMP_ALIGN_CACHE kmp_barrier_union {
1858 double b_align; /* use worst case alignment */
1859 char b_pad[KMP_PAD(kmp_bstate_t, CACHE_LINE)];
1860 kmp_bstate_t bb;
1861};
1862
1863typedef union kmp_barrier_union kmp_balign_t;
1864
1865/* Team barrier needs only non-volatile arrived counter */
1866union KMP_ALIGN_CACHE kmp_barrier_team_union {
1867 double b_align; /* use worst case alignment */
1868 char b_pad[CACHE_LINE];
1869 struct {
1870 kmp_uint64 b_arrived; /* STATE => task reached synch point. */
1871#if USE_DEBUGGER
1872 // The following two fields are indended for the debugger solely. Only
1873 // master of the team accesses these fields: the first one is increased by
1874 // 1 when master arrives to a barrier, the second one is increased by one
1875 // when all the threads arrived.
1876 kmp_uint b_master_arrived;
1877 kmp_uint b_team_arrived;
1878#endif
1879 };
1880};
1881
1882typedef union kmp_barrier_team_union kmp_balign_team_t;
1883
1884/* Padding for Linux* OS pthreads condition variables and mutexes used to signal
1885 threads when a condition changes. This is to workaround an NPTL bug where
1886 padding was added to pthread_cond_t which caused the initialization routine
1887 to write outside of the structure if compiled on pre-NPTL threads. */
1888#if KMP_OS_WINDOWS
1889typedef struct kmp_win32_mutex {
1890 /* The Lock */
1891 CRITICAL_SECTION cs;
1892} kmp_win32_mutex_t;
1893
1894typedef struct kmp_win32_cond {
1895 /* Count of the number of waiters. */
1896 int waiters_count_;
1897
1898 /* Serialize access to <waiters_count_> */
1899 kmp_win32_mutex_t waiters_count_lock_;
1900
1901 /* Number of threads to release via a <cond_broadcast> or a <cond_signal> */
1902 int release_count_;
1903
1904 /* Keeps track of the current "generation" so that we don't allow */
1905 /* one thread to steal all the "releases" from the broadcast. */
1906 int wait_generation_count_;
1907
1908 /* A manual-reset event that's used to block and release waiting threads. */
1909 HANDLE event_;
1910} kmp_win32_cond_t;
1911#endif
1912
1913#if KMP_OS_UNIX
1914
1915union KMP_ALIGN_CACHE kmp_cond_union {
1916 double c_align;
1917 char c_pad[CACHE_LINE];
1918 pthread_cond_t c_cond;
1919};
1920
1921typedef union kmp_cond_union kmp_cond_align_t;
1922
1923union KMP_ALIGN_CACHE kmp_mutex_union {
1924 double m_align;
1925 char m_pad[CACHE_LINE];
1926 pthread_mutex_t m_mutex;
1927};
1928
1929typedef union kmp_mutex_union kmp_mutex_align_t;
1930
1931#endif /* KMP_OS_UNIX */
1932
1933typedef struct kmp_desc_base {
1934 void *ds_stackbase;
1935 size_t ds_stacksize;
1936 int ds_stackgrow;
1937 kmp_thread_t ds_thread;
1938 volatile int ds_tid;
1939 int ds_gtid;
1940#if KMP_OS_WINDOWS
1941 volatile int ds_alive;
1942 DWORD ds_thread_id;
1943/* ds_thread keeps thread handle on Windows* OS. It is enough for RTL purposes.
1944 However, debugger support (libomp_db) cannot work with handles, because they
1945 uncomparable. For example, debugger requests info about thread with handle h.
1946 h is valid within debugger process, and meaningless within debugee process.
1947 Even if h is duped by call to DuplicateHandle(), so the result h' is valid
1948 within debugee process, but it is a *new* handle which does *not* equal to
1949 any other handle in debugee... The only way to compare handles is convert
1950 them to system-wide ids. GetThreadId() function is available only in
1951 Longhorn and Server 2003. :-( In contrast, GetCurrentThreadId() is available
1952 on all Windows* OS flavours (including Windows* 95). Thus, we have to get
1953 thread id by call to GetCurrentThreadId() from within the thread and save it
1954 to let libomp_db identify threads. */
1955#endif /* KMP_OS_WINDOWS */
1956} kmp_desc_base_t;
1957
1958typedef union KMP_ALIGN_CACHE kmp_desc {
1959 double ds_align; /* use worst case alignment */
1960 char ds_pad[KMP_PAD(kmp_desc_base_t, CACHE_LINE)];
1961 kmp_desc_base_t ds;
1962} kmp_desc_t;
1963
1964typedef struct kmp_local {
1965 volatile int this_construct; /* count of single's encountered by thread */
1966 void *reduce_data;
1967#if KMP_USE_BGET
1968 void *bget_data;
1969 void *bget_list;
1970#if !USE_CMP_XCHG_FOR_BGET
1971#ifdef USE_QUEUING_LOCK_FOR_BGET
1972 kmp_lock_t bget_lock; /* Lock for accessing bget free list */
1973#else
1974 kmp_bootstrap_lock_t bget_lock; // Lock for accessing bget free list. Must be
1975// bootstrap lock so we can use it at library
1976// shutdown.
1977#endif /* USE_LOCK_FOR_BGET */
1978#endif /* ! USE_CMP_XCHG_FOR_BGET */
1979#endif /* KMP_USE_BGET */
1980
1981 PACKED_REDUCTION_METHOD_T
1982 packed_reduction_method; /* stored by __kmpc_reduce*(), used by
1983 __kmpc_end_reduce*() */
1984
1985} kmp_local_t;
1986
1987#define KMP_CHECK_UPDATE(a, b) \
1988 if ((a) != (b)) \
1989 (a) = (b)
1990#define KMP_CHECK_UPDATE_SYNC(a, b) \
1991 if ((a) != (b)) \
1992 TCW_SYNC_PTR((a), (b))
1993
1994#define get__blocktime(xteam, xtid) \
1995 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime)
1996#define get__bt_set(xteam, xtid) \
1997 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set)
1998#if KMP_USE_MONITOR
1999#define get__bt_intervals(xteam, xtid) \
2000 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals)
2001#endif
2002
2003#define get__dynamic_2(xteam, xtid) \
2004 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.dynamic)
2005#define get__nproc_2(xteam, xtid) \
2006 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.nproc)
2007#define get__sched_2(xteam, xtid) \
2008 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.sched)
2009
2010#define set__blocktime_team(xteam, xtid, xval) \
2011 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) = \
2012 (xval))
2013
2014#if KMP_USE_MONITOR
2015#define set__bt_intervals_team(xteam, xtid, xval) \
2016 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) = \
2017 (xval))
2018#endif
2019
2020#define set__bt_set_team(xteam, xtid, xval) \
2021 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) = (xval))
2022
2023#define set__dynamic(xthread, xval) \
2024 (((xthread)->th.th_current_task->td_icvs.dynamic) = (xval))
2025#define get__dynamic(xthread) \
2026 (((xthread)->th.th_current_task->td_icvs.dynamic) ? (FTN_TRUE) : (FTN_FALSE))
2027
2028#define set__nproc(xthread, xval) \
2029 (((xthread)->th.th_current_task->td_icvs.nproc) = (xval))
2030
2031#define set__thread_limit(xthread, xval) \
2032 (((xthread)->th.th_current_task->td_icvs.thread_limit) = (xval))
2033
2034#define set__max_active_levels(xthread, xval) \
2035 (((xthread)->th.th_current_task->td_icvs.max_active_levels) = (xval))
2036
2037#define get__max_active_levels(xthread) \
2038 ((xthread)->th.th_current_task->td_icvs.max_active_levels)
2039
2040#define set__sched(xthread, xval) \
2041 (((xthread)->th.th_current_task->td_icvs.sched) = (xval))
2042
2043#define set__proc_bind(xthread, xval) \
2044 (((xthread)->th.th_current_task->td_icvs.proc_bind) = (xval))
2045#define get__proc_bind(xthread) \
2046 ((xthread)->th.th_current_task->td_icvs.proc_bind)
2047
2048// OpenMP tasking data structures
2049
2050typedef enum kmp_tasking_mode {
2051 tskm_immediate_exec = 0,
2052 tskm_extra_barrier = 1,
2053 tskm_task_teams = 2,
2054 tskm_max = 2
2055} kmp_tasking_mode_t;
2056
2057extern kmp_tasking_mode_t
2058 __kmp_tasking_mode; /* determines how/when to execute tasks */
2059extern int __kmp_task_stealing_constraint;
2060extern int __kmp_enable_task_throttling;
2061extern kmp_int32 __kmp_default_device; // Set via OMP_DEFAULT_DEVICE if
2062// specified, defaults to 0 otherwise
2063// Set via OMP_MAX_TASK_PRIORITY if specified, defaults to 0 otherwise
2064extern kmp_int32 __kmp_max_task_priority;
2065// Set via KMP_TASKLOOP_MIN_TASKS if specified, defaults to 0 otherwise
2066extern kmp_uint64 __kmp_taskloop_min_tasks;
2067
2068/* NOTE: kmp_taskdata_t and kmp_task_t structures allocated in single block with
2069 taskdata first */
2070#define KMP_TASK_TO_TASKDATA(task) (((kmp_taskdata_t *)task) - 1)
2071#define KMP_TASKDATA_TO_TASK(taskdata) (kmp_task_t *)(taskdata + 1)
2072
2073// The tt_found_tasks flag is a signal to all threads in the team that tasks
2074// were spawned and queued since the previous barrier release.
2075#define KMP_TASKING_ENABLED(task_team) \
2076 (TCR_SYNC_4((task_team)->tt.tt_found_tasks) == TRUE)
2084typedef kmp_int32 (*kmp_routine_entry_t)(kmp_int32, void *);
2085
2086typedef union kmp_cmplrdata {
2087 kmp_int32 priority;
2088 kmp_routine_entry_t
2089 destructors; /* pointer to function to invoke deconstructors of
2090 firstprivate C++ objects */
2091 /* future data */
2092} kmp_cmplrdata_t;
2093
2094/* sizeof_kmp_task_t passed as arg to kmpc_omp_task call */
2097typedef struct kmp_task { /* GEH: Shouldn't this be aligned somehow? */
2098 void *shareds;
2099 kmp_routine_entry_t
2100 routine;
2101 kmp_int32 part_id;
2102 kmp_cmplrdata_t
2103 data1; /* Two known optional additions: destructors and priority */
2104 kmp_cmplrdata_t data2; /* Process destructors first, priority second */
2105 /* future data */
2106 /* private vars */
2107} kmp_task_t;
2108
2113typedef struct kmp_taskgroup {
2114 std::atomic<kmp_int32> count; // number of allocated and incomplete tasks
2115 std::atomic<kmp_int32>
2116 cancel_request; // request for cancellation of this taskgroup
2117 struct kmp_taskgroup *parent; // parent taskgroup
2118 // Block of data to perform task reduction
2119 void *reduce_data; // reduction related info
2120 kmp_int32 reduce_num_data; // number of data items to reduce
2121} kmp_taskgroup_t;
2122
2123// forward declarations
2124typedef union kmp_depnode kmp_depnode_t;
2125typedef struct kmp_depnode_list kmp_depnode_list_t;
2126typedef struct kmp_dephash_entry kmp_dephash_entry_t;
2127
2128// Compiler sends us this info:
2129typedef struct kmp_depend_info {
2130 kmp_intptr_t base_addr;
2131 size_t len;
2132 struct {
2133 bool in : 1;
2134 bool out : 1;
2135 bool mtx : 1;
2136 } flags;
2137} kmp_depend_info_t;
2138
2139// Internal structures to work with task dependencies:
2140struct kmp_depnode_list {
2141 kmp_depnode_t *node;
2142 kmp_depnode_list_t *next;
2143};
2144
2145// Max number of mutexinoutset dependencies per node
2146#define MAX_MTX_DEPS 4
2147
2148typedef struct kmp_base_depnode {
2149 kmp_depnode_list_t *successors; /* used under lock */
2150 kmp_task_t *task; /* non-NULL if depnode is active, used under lock */
2151 kmp_lock_t *mtx_locks[MAX_MTX_DEPS]; /* lock mutexinoutset dependent tasks */
2152 kmp_int32 mtx_num_locks; /* number of locks in mtx_locks array */
2153 kmp_lock_t lock; /* guards shared fields: task, successors */
2154#if KMP_SUPPORT_GRAPH_OUTPUT
2155 kmp_uint32 id;
2156#endif
2157 std::atomic<kmp_int32> npredecessors;
2158 std::atomic<kmp_int32> nrefs;
2159} kmp_base_depnode_t;
2160
2161union KMP_ALIGN_CACHE kmp_depnode {
2162 double dn_align; /* use worst case alignment */
2163 char dn_pad[KMP_PAD(kmp_base_depnode_t, CACHE_LINE)];
2164 kmp_base_depnode_t dn;
2165};
2166
2167struct kmp_dephash_entry {
2168 kmp_intptr_t addr;
2169 kmp_depnode_t *last_out;
2170 kmp_depnode_list_t *last_ins;
2171 kmp_depnode_list_t *last_mtxs;
2172 kmp_int32 last_flag;
2173 kmp_lock_t *mtx_lock; /* is referenced by depnodes w/mutexinoutset dep */
2174 kmp_dephash_entry_t *next_in_bucket;
2175};
2176
2177typedef struct kmp_dephash {
2178 kmp_dephash_entry_t **buckets;
2179 size_t size;
2180 size_t generation;
2181 kmp_uint32 nelements;
2182 kmp_uint32 nconflicts;
2183} kmp_dephash_t;
2184
2185typedef struct kmp_task_affinity_info {
2186 kmp_intptr_t base_addr;
2187 size_t len;
2188 struct {
2189 bool flag1 : 1;
2190 bool flag2 : 1;
2191 kmp_int32 reserved : 30;
2192 } flags;
2193} kmp_task_affinity_info_t;
2194
2195typedef enum kmp_event_type_t {
2196 KMP_EVENT_UNINITIALIZED = 0,
2197 KMP_EVENT_ALLOW_COMPLETION = 1
2198} kmp_event_type_t;
2199
2200typedef struct {
2201 kmp_event_type_t type;
2202 kmp_tas_lock_t lock;
2203 union {
2204 kmp_task_t *task;
2205 } ed;
2206} kmp_event_t;
2207
2208#ifdef BUILD_TIED_TASK_STACK
2209
2210/* Tied Task stack definitions */
2211typedef struct kmp_stack_block {
2212 kmp_taskdata_t *sb_block[TASK_STACK_BLOCK_SIZE];
2213 struct kmp_stack_block *sb_next;
2214 struct kmp_stack_block *sb_prev;
2215} kmp_stack_block_t;
2216
2217typedef struct kmp_task_stack {
2218 kmp_stack_block_t ts_first_block; // first block of stack entries
2219 kmp_taskdata_t **ts_top; // pointer to the top of stack
2220 kmp_int32 ts_entries; // number of entries on the stack
2221} kmp_task_stack_t;
2222
2223#endif // BUILD_TIED_TASK_STACK
2224
2225typedef struct kmp_tasking_flags { /* Total struct must be exactly 32 bits */
2226 /* Compiler flags */ /* Total compiler flags must be 16 bits */
2227 unsigned tiedness : 1; /* task is either tied (1) or untied (0) */
2228 unsigned final : 1; /* task is final(1) so execute immediately */
2229 unsigned merged_if0 : 1; /* no __kmpc_task_{begin/complete}_if0 calls in if0
2230 code path */
2231 unsigned destructors_thunk : 1; /* set if the compiler creates a thunk to
2232 invoke destructors from the runtime */
2233 unsigned proxy : 1; /* task is a proxy task (it will be executed outside the
2234 context of the RTL) */
2235 unsigned priority_specified : 1; /* set if the compiler provides priority
2236 setting for the task */
2237 unsigned detachable : 1; /* 1 == can detach */
2238 unsigned reserved : 9; /* reserved for compiler use */
2239
2240 /* Library flags */ /* Total library flags must be 16 bits */
2241 unsigned tasktype : 1; /* task is either explicit(1) or implicit (0) */
2242 unsigned task_serial : 1; // task is executed immediately (1) or deferred (0)
2243 unsigned tasking_ser : 1; // all tasks in team are either executed immediately
2244 // (1) or may be deferred (0)
2245 unsigned team_serial : 1; // entire team is serial (1) [1 thread] or parallel
2246 // (0) [>= 2 threads]
2247 /* If either team_serial or tasking_ser is set, task team may be NULL */
2248 /* Task State Flags: */
2249 unsigned started : 1; /* 1==started, 0==not started */
2250 unsigned executing : 1; /* 1==executing, 0==not executing */
2251 unsigned complete : 1; /* 1==complete, 0==not complete */
2252 unsigned freed : 1; /* 1==freed, 0==allocated */
2253 unsigned native : 1; /* 1==gcc-compiled task, 0==intel */
2254 unsigned reserved31 : 7; /* reserved for library use */
2255
2256} kmp_tasking_flags_t;
2257
2258struct kmp_taskdata { /* aligned during dynamic allocation */
2259 kmp_int32 td_task_id; /* id, assigned by debugger */
2260 kmp_tasking_flags_t td_flags; /* task flags */
2261 kmp_team_t *td_team; /* team for this task */
2262 kmp_info_p *td_alloc_thread; /* thread that allocated data structures */
2263 /* Currently not used except for perhaps IDB */
2264 kmp_taskdata_t *td_parent; /* parent task */
2265 kmp_int32 td_level; /* task nesting level */
2266 std::atomic<kmp_int32> td_untied_count; // untied task active parts counter
2267 ident_t *td_ident; /* task identifier */
2268 // Taskwait data.
2269 ident_t *td_taskwait_ident;
2270 kmp_uint32 td_taskwait_counter;
2271 kmp_int32 td_taskwait_thread; /* gtid + 1 of thread encountered taskwait */
2272 KMP_ALIGN_CACHE kmp_internal_control_t
2273 td_icvs; /* Internal control variables for the task */
2274 KMP_ALIGN_CACHE std::atomic<kmp_int32>
2275 td_allocated_child_tasks; /* Child tasks (+ current task) not yet
2276 deallocated */
2277 std::atomic<kmp_int32>
2278 td_incomplete_child_tasks; /* Child tasks not yet complete */
2279 kmp_taskgroup_t
2280 *td_taskgroup; // Each task keeps pointer to its current taskgroup
2281 kmp_dephash_t
2282 *td_dephash; // Dependencies for children tasks are tracked from here
2283 kmp_depnode_t
2284 *td_depnode; // Pointer to graph node if this task has dependencies
2285 kmp_task_team_t *td_task_team;
2286 kmp_int32 td_size_alloc; // The size of task structure, including shareds etc.
2287#if defined(KMP_GOMP_COMPAT)
2288 // 4 or 8 byte integers for the loop bounds in GOMP_taskloop
2289 kmp_int32 td_size_loop_bounds;
2290#endif
2291 kmp_taskdata_t *td_last_tied; // keep tied task for task scheduling constraint
2292#if defined(KMP_GOMP_COMPAT)
2293 // GOMP sends in a copy function for copy constructors
2294 void (*td_copy_func)(void *, void *);
2295#endif
2296 kmp_event_t td_allow_completion_event;
2297#if OMPT_SUPPORT
2298 ompt_task_info_t ompt_task_info;
2299#endif
2300}; // struct kmp_taskdata
2301
2302// Make sure padding above worked
2303KMP_BUILD_ASSERT(sizeof(kmp_taskdata_t) % sizeof(void *) == 0);
2304
2305// Data for task team but per thread
2306typedef struct kmp_base_thread_data {
2307 kmp_info_p *td_thr; // Pointer back to thread info
2308 // Used only in __kmp_execute_tasks_template, maybe not avail until task is
2309 // queued?
2310 kmp_bootstrap_lock_t td_deque_lock; // Lock for accessing deque
2311 kmp_taskdata_t *
2312 *td_deque; // Deque of tasks encountered by td_thr, dynamically allocated
2313 kmp_int32 td_deque_size; // Size of deck
2314 kmp_uint32 td_deque_head; // Head of deque (will wrap)
2315 kmp_uint32 td_deque_tail; // Tail of deque (will wrap)
2316 kmp_int32 td_deque_ntasks; // Number of tasks in deque
2317 // GEH: shouldn't this be volatile since used in while-spin?
2318 kmp_int32 td_deque_last_stolen; // Thread number of last successful steal
2319#ifdef BUILD_TIED_TASK_STACK
2320 kmp_task_stack_t td_susp_tied_tasks; // Stack of suspended tied tasks for task
2321// scheduling constraint
2322#endif // BUILD_TIED_TASK_STACK
2323} kmp_base_thread_data_t;
2324
2325#define TASK_DEQUE_BITS 8 // Used solely to define INITIAL_TASK_DEQUE_SIZE
2326#define INITIAL_TASK_DEQUE_SIZE (1 << TASK_DEQUE_BITS)
2327
2328#define TASK_DEQUE_SIZE(td) ((td).td_deque_size)
2329#define TASK_DEQUE_MASK(td) ((td).td_deque_size - 1)
2330
2331typedef union KMP_ALIGN_CACHE kmp_thread_data {
2332 kmp_base_thread_data_t td;
2333 double td_align; /* use worst case alignment */
2334 char td_pad[KMP_PAD(kmp_base_thread_data_t, CACHE_LINE)];
2335} kmp_thread_data_t;
2336
2337// Data for task teams which are used when tasking is enabled for the team
2338typedef struct kmp_base_task_team {
2339 kmp_bootstrap_lock_t
2340 tt_threads_lock; /* Lock used to allocate per-thread part of task team */
2341 /* must be bootstrap lock since used at library shutdown*/
2342 kmp_task_team_t *tt_next; /* For linking the task team free list */
2343 kmp_thread_data_t
2344 *tt_threads_data; /* Array of per-thread structures for task team */
2345 /* Data survives task team deallocation */
2346 kmp_int32 tt_found_tasks; /* Have we found tasks and queued them while
2347 executing this team? */
2348 /* TRUE means tt_threads_data is set up and initialized */
2349 kmp_int32 tt_nproc; /* #threads in team */
2350 kmp_int32 tt_max_threads; // # entries allocated for threads_data array
2351 kmp_int32 tt_found_proxy_tasks; // found proxy tasks since last barrier
2352 kmp_int32 tt_untied_task_encountered;
2353
2354 KMP_ALIGN_CACHE
2355 std::atomic<kmp_int32> tt_unfinished_threads; /* #threads still active */
2356
2357 KMP_ALIGN_CACHE
2358 volatile kmp_uint32
2359 tt_active; /* is the team still actively executing tasks */
2360} kmp_base_task_team_t;
2361
2362union KMP_ALIGN_CACHE kmp_task_team {
2363 kmp_base_task_team_t tt;
2364 double tt_align; /* use worst case alignment */
2365 char tt_pad[KMP_PAD(kmp_base_task_team_t, CACHE_LINE)];
2366};
2367
2368#if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2369// Free lists keep same-size free memory slots for fast memory allocation
2370// routines
2371typedef struct kmp_free_list {
2372 void *th_free_list_self; // Self-allocated tasks free list
2373 void *th_free_list_sync; // Self-allocated tasks stolen/returned by other
2374 // threads
2375 void *th_free_list_other; // Non-self free list (to be returned to owner's
2376 // sync list)
2377} kmp_free_list_t;
2378#endif
2379#if KMP_NESTED_HOT_TEAMS
2380// Hot teams array keeps hot teams and their sizes for given thread. Hot teams
2381// are not put in teams pool, and they don't put threads in threads pool.
2382typedef struct kmp_hot_team_ptr {
2383 kmp_team_p *hot_team; // pointer to hot_team of given nesting level
2384 kmp_int32 hot_team_nth; // number of threads allocated for the hot_team
2385} kmp_hot_team_ptr_t;
2386#endif
2387typedef struct kmp_teams_size {
2388 kmp_int32 nteams; // number of teams in a league
2389 kmp_int32 nth; // number of threads in each team of the league
2390} kmp_teams_size_t;
2391
2392// This struct stores a thread that acts as a "root" for a contention
2393// group. Contention groups are rooted at kmp_root threads, but also at
2394// each master thread of each team created in the teams construct.
2395// This struct therefore also stores a thread_limit associated with
2396// that contention group, and a counter to track the number of threads
2397// active in that contention group. Each thread has a list of these: CG
2398// root threads have an entry in their list in which cg_root refers to
2399// the thread itself, whereas other workers in the CG will have a
2400// single entry where cg_root is same as the entry containing their CG
2401// root. When a thread encounters a teams construct, it will add a new
2402// entry to the front of its list, because it now roots a new CG.
2403typedef struct kmp_cg_root {
2404 kmp_info_p *cg_root; // "root" thread for a contention group
2405 // The CG root's limit comes from OMP_THREAD_LIMIT for root threads, or
2406 // thread_limit clause for teams masters
2407 kmp_int32 cg_thread_limit;
2408 kmp_int32 cg_nthreads; // Count of active threads in CG rooted at cg_root
2409 struct kmp_cg_root *up; // pointer to higher level CG root in list
2410} kmp_cg_root_t;
2411
2412// OpenMP thread data structures
2413
2414typedef struct KMP_ALIGN_CACHE kmp_base_info {
2415 /* Start with the readonly data which is cache aligned and padded. This is
2416 written before the thread starts working by the master. Uber masters may
2417 update themselves later. Usage does not consider serialized regions. */
2418 kmp_desc_t th_info;
2419 kmp_team_p *th_team; /* team we belong to */
2420 kmp_root_p *th_root; /* pointer to root of task hierarchy */
2421 kmp_info_p *th_next_pool; /* next available thread in the pool */
2422 kmp_disp_t *th_dispatch; /* thread's dispatch data */
2423 int th_in_pool; /* in thread pool (32 bits for TCR/TCW) */
2424
2425 /* The following are cached from the team info structure */
2426 /* TODO use these in more places as determined to be needed via profiling */
2427 int th_team_nproc; /* number of threads in a team */
2428 kmp_info_p *th_team_master; /* the team's master thread */
2429 int th_team_serialized; /* team is serialized */
2430 microtask_t th_teams_microtask; /* save entry address for teams construct */
2431 int th_teams_level; /* save initial level of teams construct */
2432/* it is 0 on device but may be any on host */
2433
2434/* The blocktime info is copied from the team struct to the thread struct */
2435/* at the start of a barrier, and the values stored in the team are used */
2436/* at points in the code where the team struct is no longer guaranteed */
2437/* to exist (from the POV of worker threads). */
2438#if KMP_USE_MONITOR
2439 int th_team_bt_intervals;
2440 int th_team_bt_set;
2441#else
2442 kmp_uint64 th_team_bt_intervals;
2443#endif
2444
2445#if KMP_AFFINITY_SUPPORTED
2446 kmp_affin_mask_t *th_affin_mask; /* thread's current affinity mask */
2447#endif
2448 omp_allocator_handle_t th_def_allocator; /* default allocator */
2449 /* The data set by the master at reinit, then R/W by the worker */
2450 KMP_ALIGN_CACHE int
2451 th_set_nproc; /* if > 0, then only use this request for the next fork */
2452#if KMP_NESTED_HOT_TEAMS
2453 kmp_hot_team_ptr_t *th_hot_teams; /* array of hot teams */
2454#endif
2455 kmp_proc_bind_t
2456 th_set_proc_bind; /* if != proc_bind_default, use request for next fork */
2457 kmp_teams_size_t
2458 th_teams_size; /* number of teams/threads in teams construct */
2459#if KMP_AFFINITY_SUPPORTED
2460 int th_current_place; /* place currently bound to */
2461 int th_new_place; /* place to bind to in par reg */
2462 int th_first_place; /* first place in partition */
2463 int th_last_place; /* last place in partition */
2464#endif
2465 int th_prev_level; /* previous level for affinity format */
2466 int th_prev_num_threads; /* previous num_threads for affinity format */
2467#if USE_ITT_BUILD
2468 kmp_uint64 th_bar_arrive_time; /* arrival to barrier timestamp */
2469 kmp_uint64 th_bar_min_time; /* minimum arrival time at the barrier */
2470 kmp_uint64 th_frame_time; /* frame timestamp */
2471#endif /* USE_ITT_BUILD */
2472 kmp_local_t th_local;
2473 struct private_common *th_pri_head;
2474
2475 /* Now the data only used by the worker (after initial allocation) */
2476 /* TODO the first serial team should actually be stored in the info_t
2477 structure. this will help reduce initial allocation overhead */
2478 KMP_ALIGN_CACHE kmp_team_p
2479 *th_serial_team; /*serialized team held in reserve*/
2480
2481#if OMPT_SUPPORT
2482 ompt_thread_info_t ompt_thread_info;
2483#endif
2484
2485 /* The following are also read by the master during reinit */
2486 struct common_table *th_pri_common;
2487
2488 volatile kmp_uint32 th_spin_here; /* thread-local location for spinning */
2489 /* while awaiting queuing lock acquire */
2490
2491 volatile void *th_sleep_loc; // this points at a kmp_flag<T>
2492
2493 ident_t *th_ident;
2494 unsigned th_x; // Random number generator data
2495 unsigned th_a; // Random number generator data
2496
2497 /* Tasking-related data for the thread */
2498 kmp_task_team_t *th_task_team; // Task team struct
2499 kmp_taskdata_t *th_current_task; // Innermost Task being executed
2500 kmp_uint8 th_task_state; // alternating 0/1 for task team identification
2501 kmp_uint8 *th_task_state_memo_stack; // Stack holding memos of th_task_state
2502 // at nested levels
2503 kmp_uint32 th_task_state_top; // Top element of th_task_state_memo_stack
2504 kmp_uint32 th_task_state_stack_sz; // Size of th_task_state_memo_stack
2505 kmp_uint32 th_reap_state; // Non-zero indicates thread is not
2506 // tasking, thus safe to reap
2507
2508 /* More stuff for keeping track of active/sleeping threads (this part is
2509 written by the worker thread) */
2510 kmp_uint8 th_active_in_pool; // included in count of #active threads in pool
2511 int th_active; // ! sleeping; 32 bits for TCR/TCW
2512 struct cons_header *th_cons; // used for consistency check
2513#if KMP_USE_HIER_SCHED
2514 // used for hierarchical scheduling
2515 kmp_hier_private_bdata_t *th_hier_bar_data;
2516#endif
2517
2518 /* Add the syncronizing data which is cache aligned and padded. */
2519 KMP_ALIGN_CACHE kmp_balign_t th_bar[bs_last_barrier];
2520
2521 KMP_ALIGN_CACHE volatile kmp_int32
2522 th_next_waiting; /* gtid+1 of next thread on lock wait queue, 0 if none */
2523
2524#if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2525#define NUM_LISTS 4
2526 kmp_free_list_t th_free_lists[NUM_LISTS]; // Free lists for fast memory
2527// allocation routines
2528#endif
2529
2530#if KMP_OS_WINDOWS
2531 kmp_win32_cond_t th_suspend_cv;
2532 kmp_win32_mutex_t th_suspend_mx;
2533 std::atomic<int> th_suspend_init;
2534#endif
2535#if KMP_OS_UNIX
2536 kmp_cond_align_t th_suspend_cv;
2537 kmp_mutex_align_t th_suspend_mx;
2538 std::atomic<int> th_suspend_init_count;
2539#endif
2540
2541#if USE_ITT_BUILD
2542 kmp_itt_mark_t th_itt_mark_single;
2543// alignment ???
2544#endif /* USE_ITT_BUILD */
2545#if KMP_STATS_ENABLED
2546 kmp_stats_list *th_stats;
2547#endif
2548#if KMP_OS_UNIX
2549 std::atomic<bool> th_blocking;
2550#endif
2551 kmp_cg_root_t *th_cg_roots; // list of cg_roots associated with this thread
2552} kmp_base_info_t;
2553
2554typedef union KMP_ALIGN_CACHE kmp_info {
2555 double th_align; /* use worst case alignment */
2556 char th_pad[KMP_PAD(kmp_base_info_t, CACHE_LINE)];
2557 kmp_base_info_t th;
2558} kmp_info_t;
2559
2560// OpenMP thread team data structures
2561
2562typedef struct kmp_base_data { volatile kmp_uint32 t_value; } kmp_base_data_t;
2563
2564typedef union KMP_ALIGN_CACHE kmp_sleep_team {
2565 double dt_align; /* use worst case alignment */
2566 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2567 kmp_base_data_t dt;
2568} kmp_sleep_team_t;
2569
2570typedef union KMP_ALIGN_CACHE kmp_ordered_team {
2571 double dt_align; /* use worst case alignment */
2572 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2573 kmp_base_data_t dt;
2574} kmp_ordered_team_t;
2575
2576typedef int (*launch_t)(int gtid);
2577
2578/* Minimum number of ARGV entries to malloc if necessary */
2579#define KMP_MIN_MALLOC_ARGV_ENTRIES 100
2580
2581// Set up how many argv pointers will fit in cache lines containing
2582// t_inline_argv. Historically, we have supported at least 96 bytes. Using a
2583// larger value for more space between the master write/worker read section and
2584// read/write by all section seems to buy more performance on EPCC PARALLEL.
2585#if KMP_ARCH_X86 || KMP_ARCH_X86_64
2586#define KMP_INLINE_ARGV_BYTES \
2587 (4 * CACHE_LINE - \
2588 ((3 * KMP_PTR_SKIP + 2 * sizeof(int) + 2 * sizeof(kmp_int8) + \
2589 sizeof(kmp_int16) + sizeof(kmp_uint32)) % \
2590 CACHE_LINE))
2591#else
2592#define KMP_INLINE_ARGV_BYTES \
2593 (2 * CACHE_LINE - ((3 * KMP_PTR_SKIP + 2 * sizeof(int)) % CACHE_LINE))
2594#endif
2595#define KMP_INLINE_ARGV_ENTRIES (int)(KMP_INLINE_ARGV_BYTES / KMP_PTR_SKIP)
2596
2597typedef struct KMP_ALIGN_CACHE kmp_base_team {
2598 // Synchronization Data
2599 // ---------------------------------------------------------------------------
2600 KMP_ALIGN_CACHE kmp_ordered_team_t t_ordered;
2601 kmp_balign_team_t t_bar[bs_last_barrier];
2602 std::atomic<int> t_construct; // count of single directive encountered by team
2603 char pad[sizeof(kmp_lock_t)]; // padding to maintain performance on big iron
2604
2605 // [0] - parallel / [1] - worksharing task reduction data shared by taskgroups
2606 std::atomic<void *> t_tg_reduce_data[2]; // to support task modifier
2607 std::atomic<int> t_tg_fini_counter[2]; // sync end of task reductions
2608
2609 // Master only
2610 // ---------------------------------------------------------------------------
2611 KMP_ALIGN_CACHE int t_master_tid; // tid of master in parent team
2612 int t_master_this_cons; // "this_construct" single counter of master in parent
2613 // team
2614 ident_t *t_ident; // if volatile, have to change too much other crud to
2615 // volatile too
2616 kmp_team_p *t_parent; // parent team
2617 kmp_team_p *t_next_pool; // next free team in the team pool
2618 kmp_disp_t *t_dispatch; // thread's dispatch data
2619 kmp_task_team_t *t_task_team[2]; // Task team struct; switch between 2
2620 kmp_proc_bind_t t_proc_bind; // bind type for par region
2621#if USE_ITT_BUILD
2622 kmp_uint64 t_region_time; // region begin timestamp
2623#endif /* USE_ITT_BUILD */
2624
2625 // Master write, workers read
2626 // --------------------------------------------------------------------------
2627 KMP_ALIGN_CACHE void **t_argv;
2628 int t_argc;
2629 int t_nproc; // number of threads in team
2630 microtask_t t_pkfn;
2631 launch_t t_invoke; // procedure to launch the microtask
2632
2633#if OMPT_SUPPORT
2634 ompt_team_info_t ompt_team_info;
2635 ompt_lw_taskteam_t *ompt_serialized_team_info;
2636#endif
2637
2638#if KMP_ARCH_X86 || KMP_ARCH_X86_64
2639 kmp_int8 t_fp_control_saved;
2640 kmp_int8 t_pad2b;
2641 kmp_int16 t_x87_fpu_control_word; // FP control regs
2642 kmp_uint32 t_mxcsr;
2643#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
2644
2645 void *t_inline_argv[KMP_INLINE_ARGV_ENTRIES];
2646
2647 KMP_ALIGN_CACHE kmp_info_t **t_threads;
2648 kmp_taskdata_t
2649 *t_implicit_task_taskdata; // Taskdata for the thread's implicit task
2650 int t_level; // nested parallel level
2651
2652 KMP_ALIGN_CACHE int t_max_argc;
2653 int t_max_nproc; // max threads this team can handle (dynamically expandable)
2654 int t_serialized; // levels deep of serialized teams
2655 dispatch_shared_info_t *t_disp_buffer; // buffers for dispatch system
2656 int t_id; // team's id, assigned by debugger.
2657 int t_active_level; // nested active parallel level
2658 kmp_r_sched_t t_sched; // run-time schedule for the team
2659#if KMP_AFFINITY_SUPPORTED
2660 int t_first_place; // first & last place in parent thread's partition.
2661 int t_last_place; // Restore these values to master after par region.
2662#endif // KMP_AFFINITY_SUPPORTED
2663 int t_display_affinity;
2664 int t_size_changed; // team size was changed?: 0: no, 1: yes, -1: changed via
2665 // omp_set_num_threads() call
2666 omp_allocator_handle_t t_def_allocator; /* default allocator */
2667
2668// Read/write by workers as well
2669#if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
2670 // Using CACHE_LINE=64 reduces memory footprint, but causes a big perf
2671 // regression of epcc 'parallel' and 'barrier' on fxe256lin01. This extra
2672 // padding serves to fix the performance of epcc 'parallel' and 'barrier' when
2673 // CACHE_LINE=64. TODO: investigate more and get rid if this padding.
2674 char dummy_padding[1024];
2675#endif
2676 // Internal control stack for additional nested teams.
2677 KMP_ALIGN_CACHE kmp_internal_control_t *t_control_stack_top;
2678 // for SERIALIZED teams nested 2 or more levels deep
2679 // typed flag to store request state of cancellation
2680 std::atomic<kmp_int32> t_cancel_request;
2681 int t_master_active; // save on fork, restore on join
2682 void *t_copypriv_data; // team specific pointer to copyprivate data array
2683#if KMP_OS_WINDOWS
2684 std::atomic<kmp_uint32> t_copyin_counter;
2685#endif
2686#if USE_ITT_BUILD
2687 void *t_stack_id; // team specific stack stitching id (for ittnotify)
2688#endif /* USE_ITT_BUILD */
2689} kmp_base_team_t;
2690
2691union KMP_ALIGN_CACHE kmp_team {
2692 kmp_base_team_t t;
2693 double t_align; /* use worst case alignment */
2694 char t_pad[KMP_PAD(kmp_base_team_t, CACHE_LINE)];
2695};
2696
2697typedef union KMP_ALIGN_CACHE kmp_time_global {
2698 double dt_align; /* use worst case alignment */
2699 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2700 kmp_base_data_t dt;
2701} kmp_time_global_t;
2702
2703typedef struct kmp_base_global {
2704 /* cache-aligned */
2705 kmp_time_global_t g_time;
2706
2707 /* non cache-aligned */
2708 volatile int g_abort;
2709 volatile int g_done;
2710
2711 int g_dynamic;
2712 enum dynamic_mode g_dynamic_mode;
2713} kmp_base_global_t;
2714
2715typedef union KMP_ALIGN_CACHE kmp_global {
2716 kmp_base_global_t g;
2717 double g_align; /* use worst case alignment */
2718 char g_pad[KMP_PAD(kmp_base_global_t, CACHE_LINE)];
2719} kmp_global_t;
2720
2721typedef struct kmp_base_root {
2722 // TODO: GEH - combine r_active with r_in_parallel then r_active ==
2723 // (r_in_parallel>= 0)
2724 // TODO: GEH - then replace r_active with t_active_levels if we can to reduce
2725 // the synch overhead or keeping r_active
2726 volatile int r_active; /* TRUE if some region in a nest has > 1 thread */
2727 // keeps a count of active parallel regions per root
2728 std::atomic<int> r_in_parallel;
2729 // GEH: This is misnamed, should be r_active_levels
2730 kmp_team_t *r_root_team;
2731 kmp_team_t *r_hot_team;
2732 kmp_info_t *r_uber_thread;
2733 kmp_lock_t r_begin_lock;
2734 volatile int r_begin;
2735 int r_blocktime; /* blocktime for this root and descendants */
2736} kmp_base_root_t;
2737
2738typedef union KMP_ALIGN_CACHE kmp_root {
2739 kmp_base_root_t r;
2740 double r_align; /* use worst case alignment */
2741 char r_pad[KMP_PAD(kmp_base_root_t, CACHE_LINE)];
2742} kmp_root_t;
2743
2744struct fortran_inx_info {
2745 kmp_int32 data;
2746};
2747
2748/* ------------------------------------------------------------------------ */
2749
2750extern int __kmp_settings;
2751extern int __kmp_duplicate_library_ok;
2752#if USE_ITT_BUILD
2753extern int __kmp_forkjoin_frames;
2754extern int __kmp_forkjoin_frames_mode;
2755#endif
2756extern PACKED_REDUCTION_METHOD_T __kmp_force_reduction_method;
2757extern int __kmp_determ_red;
2758
2759#ifdef KMP_DEBUG
2760extern int kmp_a_debug;
2761extern int kmp_b_debug;
2762extern int kmp_c_debug;
2763extern int kmp_d_debug;
2764extern int kmp_e_debug;
2765extern int kmp_f_debug;
2766#endif /* KMP_DEBUG */
2767
2768/* For debug information logging using rotating buffer */
2769#define KMP_DEBUG_BUF_LINES_INIT 512
2770#define KMP_DEBUG_BUF_LINES_MIN 1
2771
2772#define KMP_DEBUG_BUF_CHARS_INIT 128
2773#define KMP_DEBUG_BUF_CHARS_MIN 2
2774
2775extern int
2776 __kmp_debug_buf; /* TRUE means use buffer, FALSE means print to stderr */
2777extern int __kmp_debug_buf_lines; /* How many lines of debug stored in buffer */
2778extern int
2779 __kmp_debug_buf_chars; /* How many characters allowed per line in buffer */
2780extern int __kmp_debug_buf_atomic; /* TRUE means use atomic update of buffer
2781 entry pointer */
2782
2783extern char *__kmp_debug_buffer; /* Debug buffer itself */
2784extern std::atomic<int> __kmp_debug_count; /* Counter for number of lines
2785 printed in buffer so far */
2786extern int __kmp_debug_buf_warn_chars; /* Keep track of char increase
2787 recommended in warnings */
2788/* end rotating debug buffer */
2789
2790#ifdef KMP_DEBUG
2791extern int __kmp_par_range; /* +1 => only go par for constructs in range */
2792
2793#define KMP_PAR_RANGE_ROUTINE_LEN 1024
2794extern char __kmp_par_range_routine[KMP_PAR_RANGE_ROUTINE_LEN];
2795#define KMP_PAR_RANGE_FILENAME_LEN 1024
2796extern char __kmp_par_range_filename[KMP_PAR_RANGE_FILENAME_LEN];
2797extern int __kmp_par_range_lb;
2798extern int __kmp_par_range_ub;
2799#endif
2800
2801/* For printing out dynamic storage map for threads and teams */
2802extern int
2803 __kmp_storage_map; /* True means print storage map for threads and teams */
2804extern int __kmp_storage_map_verbose; /* True means storage map includes
2805 placement info */
2806extern int __kmp_storage_map_verbose_specified;
2807
2808#if KMP_ARCH_X86 || KMP_ARCH_X86_64
2809extern kmp_cpuinfo_t __kmp_cpuinfo;
2810#endif
2811
2812extern volatile int __kmp_init_serial;
2813extern volatile int __kmp_init_gtid;
2814extern volatile int __kmp_init_common;
2815extern volatile int __kmp_init_middle;
2816extern volatile int __kmp_init_parallel;
2817#if KMP_USE_MONITOR
2818extern volatile int __kmp_init_monitor;
2819#endif
2820extern volatile int __kmp_init_user_locks;
2821extern int __kmp_init_counter;
2822extern int __kmp_root_counter;
2823extern int __kmp_version;
2824
2825/* list of address of allocated caches for commons */
2826extern kmp_cached_addr_t *__kmp_threadpriv_cache_list;
2827
2828/* Barrier algorithm types and options */
2829extern kmp_uint32 __kmp_barrier_gather_bb_dflt;
2830extern kmp_uint32 __kmp_barrier_release_bb_dflt;
2831extern kmp_bar_pat_e __kmp_barrier_gather_pat_dflt;
2832extern kmp_bar_pat_e __kmp_barrier_release_pat_dflt;
2833extern kmp_uint32 __kmp_barrier_gather_branch_bits[bs_last_barrier];
2834extern kmp_uint32 __kmp_barrier_release_branch_bits[bs_last_barrier];
2835extern kmp_bar_pat_e __kmp_barrier_gather_pattern[bs_last_barrier];
2836extern kmp_bar_pat_e __kmp_barrier_release_pattern[bs_last_barrier];
2837extern char const *__kmp_barrier_branch_bit_env_name[bs_last_barrier];
2838extern char const *__kmp_barrier_pattern_env_name[bs_last_barrier];
2839extern char const *__kmp_barrier_type_name[bs_last_barrier];
2840extern char const *__kmp_barrier_pattern_name[bp_last_bar];
2841
2842/* Global Locks */
2843extern kmp_bootstrap_lock_t __kmp_initz_lock; /* control initialization */
2844extern kmp_bootstrap_lock_t __kmp_forkjoin_lock; /* control fork/join access */
2845extern kmp_bootstrap_lock_t __kmp_task_team_lock;
2846extern kmp_bootstrap_lock_t
2847 __kmp_exit_lock; /* exit() is not always thread-safe */
2848#if KMP_USE_MONITOR
2849extern kmp_bootstrap_lock_t
2850 __kmp_monitor_lock; /* control monitor thread creation */
2851#endif
2852extern kmp_bootstrap_lock_t
2853 __kmp_tp_cached_lock; /* used for the hack to allow threadprivate cache and
2854 __kmp_threads expansion to co-exist */
2855
2856extern kmp_lock_t __kmp_global_lock; /* control OS/global access */
2857extern kmp_queuing_lock_t __kmp_dispatch_lock; /* control dispatch access */
2858extern kmp_lock_t __kmp_debug_lock; /* control I/O access for KMP_DEBUG */
2859
2860extern enum library_type __kmp_library;
2861
2862extern enum sched_type __kmp_sched; /* default runtime scheduling */
2863extern enum sched_type __kmp_static; /* default static scheduling method */
2864extern enum sched_type __kmp_guided; /* default guided scheduling method */
2865extern enum sched_type __kmp_auto; /* default auto scheduling method */
2866extern int __kmp_chunk; /* default runtime chunk size */
2867
2868extern size_t __kmp_stksize; /* stack size per thread */
2869#if KMP_USE_MONITOR
2870extern size_t __kmp_monitor_stksize; /* stack size for monitor thread */
2871#endif
2872extern size_t __kmp_stkoffset; /* stack offset per thread */
2873extern int __kmp_stkpadding; /* Should we pad root thread(s) stack */
2874
2875extern size_t
2876 __kmp_malloc_pool_incr; /* incremental size of pool for kmp_malloc() */
2877extern int __kmp_env_stksize; /* was KMP_STACKSIZE specified? */
2878extern int __kmp_env_blocktime; /* was KMP_BLOCKTIME specified? */
2879extern int __kmp_env_checks; /* was KMP_CHECKS specified? */
2880extern int __kmp_env_consistency_check; // was KMP_CONSISTENCY_CHECK specified?
2881extern int __kmp_generate_warnings; /* should we issue warnings? */
2882extern int __kmp_reserve_warn; /* have we issued reserve_threads warning? */
2883
2884#ifdef DEBUG_SUSPEND
2885extern int __kmp_suspend_count; /* count inside __kmp_suspend_template() */
2886#endif
2887
2888extern kmp_int32 __kmp_use_yield;
2889extern kmp_int32 __kmp_use_yield_exp_set;
2890extern kmp_uint32 __kmp_yield_init;
2891extern kmp_uint32 __kmp_yield_next;
2892
2893/* ------------------------------------------------------------------------- */
2894extern int __kmp_allThreadsSpecified;
2895
2896extern size_t __kmp_align_alloc;
2897/* following data protected by initialization routines */
2898extern int __kmp_xproc; /* number of processors in the system */
2899extern int __kmp_avail_proc; /* number of processors available to the process */
2900extern size_t __kmp_sys_min_stksize; /* system-defined minimum stack size */
2901extern int __kmp_sys_max_nth; /* system-imposed maximum number of threads */
2902// maximum total number of concurrently-existing threads on device
2903extern int __kmp_max_nth;
2904// maximum total number of concurrently-existing threads in a contention group
2905extern int __kmp_cg_max_nth;
2906extern int __kmp_teams_max_nth; // max threads used in a teams construct
2907extern int __kmp_threads_capacity; /* capacity of the arrays __kmp_threads and
2908 __kmp_root */
2909extern int __kmp_dflt_team_nth; /* default number of threads in a parallel
2910 region a la OMP_NUM_THREADS */
2911extern int __kmp_dflt_team_nth_ub; /* upper bound on "" determined at serial
2912 initialization */
2913extern int __kmp_tp_capacity; /* capacity of __kmp_threads if threadprivate is
2914 used (fixed) */
2915extern int __kmp_tp_cached; /* whether threadprivate cache has been created
2916 (__kmpc_threadprivate_cached()) */
2917extern int __kmp_dflt_blocktime; /* number of milliseconds to wait before
2918 blocking (env setting) */
2919#if KMP_USE_MONITOR
2920extern int
2921 __kmp_monitor_wakeups; /* number of times monitor wakes up per second */
2922extern int __kmp_bt_intervals; /* number of monitor timestamp intervals before
2923 blocking */
2924#endif
2925#ifdef KMP_ADJUST_BLOCKTIME
2926extern int __kmp_zero_bt; /* whether blocktime has been forced to zero */
2927#endif /* KMP_ADJUST_BLOCKTIME */
2928#ifdef KMP_DFLT_NTH_CORES
2929extern int __kmp_ncores; /* Total number of cores for threads placement */
2930#endif
2931/* Number of millisecs to delay on abort for Intel(R) VTune(TM) tools */
2932extern int __kmp_abort_delay;
2933
2934extern int __kmp_need_register_atfork_specified;
2935extern int
2936 __kmp_need_register_atfork; /* At initialization, call pthread_atfork to
2937 install fork handler */
2938extern int __kmp_gtid_mode; /* Method of getting gtid, values:
2939 0 - not set, will be set at runtime
2940 1 - using stack search
2941 2 - dynamic TLS (pthread_getspecific(Linux* OS/OS
2942 X*) or TlsGetValue(Windows* OS))
2943 3 - static TLS (__declspec(thread) __kmp_gtid),
2944 Linux* OS .so only. */
2945extern int
2946 __kmp_adjust_gtid_mode; /* If true, adjust method based on #threads */
2947#ifdef KMP_TDATA_GTID
2948extern KMP_THREAD_LOCAL int __kmp_gtid;
2949#endif
2950extern int __kmp_tls_gtid_min; /* #threads below which use sp search for gtid */
2951extern int __kmp_foreign_tp; // If true, separate TP var for each foreign thread
2952#if KMP_ARCH_X86 || KMP_ARCH_X86_64
2953extern int __kmp_inherit_fp_control; // copy fp creg(s) parent->workers at fork
2954extern kmp_int16 __kmp_init_x87_fpu_control_word; // init thread's FP ctrl reg
2955extern kmp_uint32 __kmp_init_mxcsr; /* init thread's mxscr */
2956#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
2957
2958// max_active_levels for nested parallelism enabled by default via
2959// OMP_MAX_ACTIVE_LEVELS, OMP_NESTED, OMP_NUM_THREADS, and OMP_PROC_BIND
2960extern int __kmp_dflt_max_active_levels;
2961// Indicates whether value of __kmp_dflt_max_active_levels was already
2962// explicitly set by OMP_MAX_ACTIVE_LEVELS or OMP_NESTED=false
2963extern bool __kmp_dflt_max_active_levels_set;
2964extern int __kmp_dispatch_num_buffers; /* max possible dynamic loops in
2965 concurrent execution per team */
2966#if KMP_NESTED_HOT_TEAMS
2967extern int __kmp_hot_teams_mode;
2968extern int __kmp_hot_teams_max_level;
2969#endif
2970
2971#if KMP_OS_LINUX
2972extern enum clock_function_type __kmp_clock_function;
2973extern int __kmp_clock_function_param;
2974#endif /* KMP_OS_LINUX */
2975
2976#if KMP_MIC_SUPPORTED
2977extern enum mic_type __kmp_mic_type;
2978#endif
2979
2980#ifdef USE_LOAD_BALANCE
2981extern double __kmp_load_balance_interval; // load balance algorithm interval
2982#endif /* USE_LOAD_BALANCE */
2983
2984// OpenMP 3.1 - Nested num threads array
2985typedef struct kmp_nested_nthreads_t {
2986 int *nth;
2987 int size;
2988 int used;
2989} kmp_nested_nthreads_t;
2990
2991extern kmp_nested_nthreads_t __kmp_nested_nth;
2992
2993#if KMP_USE_ADAPTIVE_LOCKS
2994
2995// Parameters for the speculative lock backoff system.
2996struct kmp_adaptive_backoff_params_t {
2997 // Number of soft retries before it counts as a hard retry.
2998 kmp_uint32 max_soft_retries;
2999 // Badness is a bit mask : 0,1,3,7,15,... on each hard failure we move one to
3000 // the right
3001 kmp_uint32 max_badness;
3002};
3003
3004extern kmp_adaptive_backoff_params_t __kmp_adaptive_backoff_params;
3005
3006#if KMP_DEBUG_ADAPTIVE_LOCKS
3007extern const char *__kmp_speculative_statsfile;
3008#endif
3009
3010#endif // KMP_USE_ADAPTIVE_LOCKS
3011
3012extern int __kmp_display_env; /* TRUE or FALSE */
3013extern int __kmp_display_env_verbose; /* TRUE if OMP_DISPLAY_ENV=VERBOSE */
3014extern int __kmp_omp_cancellation; /* TRUE or FALSE */
3015
3016/* ------------------------------------------------------------------------- */
3017
3018/* the following are protected by the fork/join lock */
3019/* write: lock read: anytime */
3020extern kmp_info_t **__kmp_threads; /* Descriptors for the threads */
3021/* read/write: lock */
3022extern volatile kmp_team_t *__kmp_team_pool;
3023extern volatile kmp_info_t *__kmp_thread_pool;
3024extern kmp_info_t *__kmp_thread_pool_insert_pt;
3025
3026// total num threads reachable from some root thread including all root threads
3027extern volatile int __kmp_nth;
3028/* total number of threads reachable from some root thread including all root
3029 threads, and those in the thread pool */
3030extern volatile int __kmp_all_nth;
3031extern std::atomic<int> __kmp_thread_pool_active_nth;
3032
3033extern kmp_root_t **__kmp_root; /* root of thread hierarchy */
3034/* end data protected by fork/join lock */
3035/* ------------------------------------------------------------------------- */
3036
3037#define __kmp_get_gtid() __kmp_get_global_thread_id()
3038#define __kmp_entry_gtid() __kmp_get_global_thread_id_reg()
3039#define __kmp_get_tid() (__kmp_tid_from_gtid(__kmp_get_gtid()))
3040#define __kmp_get_team() (__kmp_threads[(__kmp_get_gtid())]->th.th_team)
3041#define __kmp_get_thread() (__kmp_thread_from_gtid(__kmp_get_gtid()))
3042
3043// AT: Which way is correct?
3044// AT: 1. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team -> t.t_nproc;
3045// AT: 2. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team_nproc;
3046#define __kmp_get_team_num_threads(gtid) \
3047 (__kmp_threads[(gtid)]->th.th_team->t.t_nproc)
3048
3049static inline bool KMP_UBER_GTID(int gtid) {
3050 KMP_DEBUG_ASSERT(gtid >= KMP_GTID_MIN);
3051 KMP_DEBUG_ASSERT(gtid < __kmp_threads_capacity);
3052 return (gtid >= 0 && __kmp_root[gtid] && __kmp_threads[gtid] &&
3053 __kmp_threads[gtid] == __kmp_root[gtid]->r.r_uber_thread);
3054}
3055
3056static inline int __kmp_tid_from_gtid(int gtid) {
3057 KMP_DEBUG_ASSERT(gtid >= 0);
3058 return __kmp_threads[gtid]->th.th_info.ds.ds_tid;
3059}
3060
3061static inline int __kmp_gtid_from_tid(int tid, const kmp_team_t *team) {
3062 KMP_DEBUG_ASSERT(tid >= 0 && team);
3063 return team->t.t_threads[tid]->th.th_info.ds.ds_gtid;
3064}
3065
3066static inline int __kmp_gtid_from_thread(const kmp_info_t *thr) {
3067 KMP_DEBUG_ASSERT(thr);
3068 return thr->th.th_info.ds.ds_gtid;
3069}
3070
3071static inline kmp_info_t *__kmp_thread_from_gtid(int gtid) {
3072 KMP_DEBUG_ASSERT(gtid >= 0);
3073 return __kmp_threads[gtid];
3074}
3075
3076static inline kmp_team_t *__kmp_team_from_gtid(int gtid) {
3077 KMP_DEBUG_ASSERT(gtid >= 0);
3078 return __kmp_threads[gtid]->th.th_team;
3079}
3080
3081/* ------------------------------------------------------------------------- */
3082
3083extern kmp_global_t __kmp_global; /* global status */
3084
3085extern kmp_info_t __kmp_monitor;
3086// For Debugging Support Library
3087extern std::atomic<kmp_int32> __kmp_team_counter;
3088// For Debugging Support Library
3089extern std::atomic<kmp_int32> __kmp_task_counter;
3090
3091#if USE_DEBUGGER
3092#define _KMP_GEN_ID(counter) \
3093 (__kmp_debugging ? KMP_ATOMIC_INC(&counter) + 1 : ~0)
3094#else
3095#define _KMP_GEN_ID(counter) (~0)
3096#endif /* USE_DEBUGGER */
3097
3098#define KMP_GEN_TASK_ID() _KMP_GEN_ID(__kmp_task_counter)
3099#define KMP_GEN_TEAM_ID() _KMP_GEN_ID(__kmp_team_counter)
3100
3101/* ------------------------------------------------------------------------ */
3102
3103extern void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2,
3104 size_t size, char const *format, ...);
3105
3106extern void __kmp_serial_initialize(void);
3107extern void __kmp_middle_initialize(void);
3108extern void __kmp_parallel_initialize(void);
3109
3110extern void __kmp_internal_begin(void);
3111extern void __kmp_internal_end_library(int gtid);
3112extern void __kmp_internal_end_thread(int gtid);
3113extern void __kmp_internal_end_atexit(void);
3114extern void __kmp_internal_end_dtor(void);
3115extern void __kmp_internal_end_dest(void *);
3116
3117extern int __kmp_register_root(int initial_thread);
3118extern void __kmp_unregister_root(int gtid);
3119
3120extern int __kmp_ignore_mppbeg(void);
3121extern int __kmp_ignore_mppend(void);
3122
3123extern int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws);
3124extern void __kmp_exit_single(int gtid);
3125
3126extern void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3127extern void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3128
3129#ifdef USE_LOAD_BALANCE
3130extern int __kmp_get_load_balance(int);
3131#endif
3132
3133extern int __kmp_get_global_thread_id(void);
3134extern int __kmp_get_global_thread_id_reg(void);
3135extern void __kmp_exit_thread(int exit_status);
3136extern void __kmp_abort(char const *format, ...);
3137extern void __kmp_abort_thread(void);
3138KMP_NORETURN extern void __kmp_abort_process(void);
3139extern void __kmp_warn(char const *format, ...);
3140
3141extern void __kmp_set_num_threads(int new_nth, int gtid);
3142
3143// Returns current thread (pointer to kmp_info_t). Current thread *must* be
3144// registered.
3145static inline kmp_info_t *__kmp_entry_thread() {
3146 int gtid = __kmp_entry_gtid();
3147
3148 return __kmp_threads[gtid];
3149}
3150
3151extern void __kmp_set_max_active_levels(int gtid, int new_max_active_levels);
3152extern int __kmp_get_max_active_levels(int gtid);
3153extern int __kmp_get_ancestor_thread_num(int gtid, int level);
3154extern int __kmp_get_team_size(int gtid, int level);
3155extern void __kmp_set_schedule(int gtid, kmp_sched_t new_sched, int chunk);
3156extern void __kmp_get_schedule(int gtid, kmp_sched_t *sched, int *chunk);
3157
3158extern unsigned short __kmp_get_random(kmp_info_t *thread);
3159extern void __kmp_init_random(kmp_info_t *thread);
3160
3161extern kmp_r_sched_t __kmp_get_schedule_global(void);
3162extern void __kmp_adjust_num_threads(int new_nproc);
3163extern void __kmp_check_stksize(size_t *val);
3164
3165extern void *___kmp_allocate(size_t size KMP_SRC_LOC_DECL);
3166extern void *___kmp_page_allocate(size_t size KMP_SRC_LOC_DECL);
3167extern void ___kmp_free(void *ptr KMP_SRC_LOC_DECL);
3168#define __kmp_allocate(size) ___kmp_allocate((size)KMP_SRC_LOC_CURR)
3169#define __kmp_page_allocate(size) ___kmp_page_allocate((size)KMP_SRC_LOC_CURR)
3170#define __kmp_free(ptr) ___kmp_free((ptr)KMP_SRC_LOC_CURR)
3171
3172#if USE_FAST_MEMORY
3173extern void *___kmp_fast_allocate(kmp_info_t *this_thr,
3174 size_t size KMP_SRC_LOC_DECL);
3175extern void ___kmp_fast_free(kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL);
3176extern void __kmp_free_fast_memory(kmp_info_t *this_thr);
3177extern void __kmp_initialize_fast_memory(kmp_info_t *this_thr);
3178#define __kmp_fast_allocate(this_thr, size) \
3179 ___kmp_fast_allocate((this_thr), (size)KMP_SRC_LOC_CURR)
3180#define __kmp_fast_free(this_thr, ptr) \
3181 ___kmp_fast_free((this_thr), (ptr)KMP_SRC_LOC_CURR)
3182#endif
3183
3184extern void *___kmp_thread_malloc(kmp_info_t *th, size_t size KMP_SRC_LOC_DECL);
3185extern void *___kmp_thread_calloc(kmp_info_t *th, size_t nelem,
3186 size_t elsize KMP_SRC_LOC_DECL);
3187extern void *___kmp_thread_realloc(kmp_info_t *th, void *ptr,
3188 size_t size KMP_SRC_LOC_DECL);
3189extern void ___kmp_thread_free(kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL);
3190#define __kmp_thread_malloc(th, size) \
3191 ___kmp_thread_malloc((th), (size)KMP_SRC_LOC_CURR)
3192#define __kmp_thread_calloc(th, nelem, elsize) \
3193 ___kmp_thread_calloc((th), (nelem), (elsize)KMP_SRC_LOC_CURR)
3194#define __kmp_thread_realloc(th, ptr, size) \
3195 ___kmp_thread_realloc((th), (ptr), (size)KMP_SRC_LOC_CURR)
3196#define __kmp_thread_free(th, ptr) \
3197 ___kmp_thread_free((th), (ptr)KMP_SRC_LOC_CURR)
3198
3199#define KMP_INTERNAL_MALLOC(sz) malloc(sz)
3200#define KMP_INTERNAL_FREE(p) free(p)
3201#define KMP_INTERNAL_REALLOC(p, sz) realloc((p), (sz))
3202#define KMP_INTERNAL_CALLOC(n, sz) calloc((n), (sz))
3203
3204extern void __kmp_push_num_threads(ident_t *loc, int gtid, int num_threads);
3205
3206extern void __kmp_push_proc_bind(ident_t *loc, int gtid,
3207 kmp_proc_bind_t proc_bind);
3208extern void __kmp_push_num_teams(ident_t *loc, int gtid, int num_teams,
3209 int num_threads);
3210
3211extern void __kmp_yield();
3212
3213extern void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3214 enum sched_type schedule, kmp_int32 lb,
3215 kmp_int32 ub, kmp_int32 st, kmp_int32 chunk);
3216extern void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3217 enum sched_type schedule, kmp_uint32 lb,
3218 kmp_uint32 ub, kmp_int32 st,
3219 kmp_int32 chunk);
3220extern void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3221 enum sched_type schedule, kmp_int64 lb,
3222 kmp_int64 ub, kmp_int64 st, kmp_int64 chunk);
3223extern void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3224 enum sched_type schedule, kmp_uint64 lb,
3225 kmp_uint64 ub, kmp_int64 st,
3226 kmp_int64 chunk);
3227
3228extern int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid,
3229 kmp_int32 *p_last, kmp_int32 *p_lb,
3230 kmp_int32 *p_ub, kmp_int32 *p_st);
3231extern int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid,
3232 kmp_int32 *p_last, kmp_uint32 *p_lb,
3233 kmp_uint32 *p_ub, kmp_int32 *p_st);
3234extern int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid,
3235 kmp_int32 *p_last, kmp_int64 *p_lb,
3236 kmp_int64 *p_ub, kmp_int64 *p_st);
3237extern int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid,
3238 kmp_int32 *p_last, kmp_uint64 *p_lb,
3239 kmp_uint64 *p_ub, kmp_int64 *p_st);
3240
3241extern void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid);
3242extern void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid);
3243extern void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid);
3244extern void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid);
3245
3246#ifdef KMP_GOMP_COMPAT
3247
3248extern void __kmp_aux_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3249 enum sched_type schedule, kmp_int32 lb,
3250 kmp_int32 ub, kmp_int32 st,
3251 kmp_int32 chunk, int push_ws);
3252extern void __kmp_aux_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3253 enum sched_type schedule, kmp_uint32 lb,
3254 kmp_uint32 ub, kmp_int32 st,
3255 kmp_int32 chunk, int push_ws);
3256extern void __kmp_aux_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3257 enum sched_type schedule, kmp_int64 lb,
3258 kmp_int64 ub, kmp_int64 st,
3259 kmp_int64 chunk, int push_ws);
3260extern void __kmp_aux_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3261 enum sched_type schedule, kmp_uint64 lb,
3262 kmp_uint64 ub, kmp_int64 st,
3263 kmp_int64 chunk, int push_ws);
3264extern void __kmp_aux_dispatch_fini_chunk_4(ident_t *loc, kmp_int32 gtid);
3265extern void __kmp_aux_dispatch_fini_chunk_8(ident_t *loc, kmp_int32 gtid);
3266extern void __kmp_aux_dispatch_fini_chunk_4u(ident_t *loc, kmp_int32 gtid);
3267extern void __kmp_aux_dispatch_fini_chunk_8u(ident_t *loc, kmp_int32 gtid);
3268
3269#endif /* KMP_GOMP_COMPAT */
3270
3271extern kmp_uint32 __kmp_eq_4(kmp_uint32 value, kmp_uint32 checker);
3272extern kmp_uint32 __kmp_neq_4(kmp_uint32 value, kmp_uint32 checker);
3273extern kmp_uint32 __kmp_lt_4(kmp_uint32 value, kmp_uint32 checker);
3274extern kmp_uint32 __kmp_ge_4(kmp_uint32 value, kmp_uint32 checker);
3275extern kmp_uint32 __kmp_le_4(kmp_uint32 value, kmp_uint32 checker);
3276extern kmp_uint32 __kmp_wait_4(kmp_uint32 volatile *spinner, kmp_uint32 checker,
3277 kmp_uint32 (*pred)(kmp_uint32, kmp_uint32),
3278 void *obj);
3279extern void __kmp_wait_4_ptr(void *spinner, kmp_uint32 checker,
3280 kmp_uint32 (*pred)(void *, kmp_uint32), void *obj);
3281
3282class kmp_flag_32;
3283class kmp_flag_64;
3284class kmp_flag_oncore;
3285extern void __kmp_wait_64(kmp_info_t *this_thr, kmp_flag_64 *flag,
3286 int final_spin
3287#if USE_ITT_BUILD
3288 ,
3289 void *itt_sync_obj
3290#endif
3291 );
3292extern void __kmp_release_64(kmp_flag_64 *flag);
3293
3294extern void __kmp_infinite_loop(void);
3295
3296extern void __kmp_cleanup(void);
3297
3298#if KMP_HANDLE_SIGNALS
3299extern int __kmp_handle_signals;
3300extern void __kmp_install_signals(int parallel_init);
3301extern void __kmp_remove_signals(void);
3302#endif
3303
3304extern void __kmp_clear_system_time(void);
3305extern void __kmp_read_system_time(double *delta);
3306
3307extern void __kmp_check_stack_overlap(kmp_info_t *thr);
3308
3309extern void __kmp_expand_host_name(char *buffer, size_t size);
3310extern void __kmp_expand_file_name(char *result, size_t rlen, char *pattern);
3311
3312#if KMP_ARCH_X86 || KMP_ARCH_X86_64
3313extern void
3314__kmp_initialize_system_tick(void); /* Initialize timer tick value */
3315#endif
3316
3317extern void
3318__kmp_runtime_initialize(void); /* machine specific initialization */
3319extern void __kmp_runtime_destroy(void);
3320
3321#if KMP_AFFINITY_SUPPORTED
3322extern char *__kmp_affinity_print_mask(char *buf, int buf_len,
3323 kmp_affin_mask_t *mask);
3324extern kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
3325 kmp_affin_mask_t *mask);
3326extern void __kmp_affinity_initialize(void);
3327extern void __kmp_affinity_uninitialize(void);
3328extern void __kmp_affinity_set_init_mask(
3329 int gtid, int isa_root); /* set affinity according to KMP_AFFINITY */
3330extern void __kmp_affinity_set_place(int gtid);
3331extern void __kmp_affinity_determine_capable(const char *env_var);
3332extern int __kmp_aux_set_affinity(void **mask);
3333extern int __kmp_aux_get_affinity(void **mask);
3334extern int __kmp_aux_get_affinity_max_proc();
3335extern int __kmp_aux_set_affinity_mask_proc(int proc, void **mask);
3336extern int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask);
3337extern int __kmp_aux_get_affinity_mask_proc(int proc, void **mask);
3338extern void __kmp_balanced_affinity(kmp_info_t *th, int team_size);
3339#if KMP_OS_LINUX || KMP_OS_FREEBSD
3340extern int kmp_set_thread_affinity_mask_initial(void);
3341#endif
3342#endif /* KMP_AFFINITY_SUPPORTED */
3343// No need for KMP_AFFINITY_SUPPORTED guard as only one field in the
3344// format string is for affinity, so platforms that do not support
3345// affinity can still use the other fields, e.g., %n for num_threads
3346extern size_t __kmp_aux_capture_affinity(int gtid, const char *format,
3347 kmp_str_buf_t *buffer);
3348extern void __kmp_aux_display_affinity(int gtid, const char *format);
3349
3350extern void __kmp_cleanup_hierarchy();
3351extern void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar);
3352
3353#if KMP_USE_FUTEX
3354
3355extern int __kmp_futex_determine_capable(void);
3356
3357#endif // KMP_USE_FUTEX
3358
3359extern void __kmp_gtid_set_specific(int gtid);
3360extern int __kmp_gtid_get_specific(void);
3361
3362extern double __kmp_read_cpu_time(void);
3363
3364extern int __kmp_read_system_info(struct kmp_sys_info *info);
3365
3366#if KMP_USE_MONITOR
3367extern void __kmp_create_monitor(kmp_info_t *th);
3368#endif
3369
3370extern void *__kmp_launch_thread(kmp_info_t *thr);
3371
3372extern void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size);
3373
3374#if KMP_OS_WINDOWS
3375extern int __kmp_still_running(kmp_info_t *th);
3376extern int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val);
3377extern void __kmp_free_handle(kmp_thread_t tHandle);
3378#endif
3379
3380#if KMP_USE_MONITOR
3381extern void __kmp_reap_monitor(kmp_info_t *th);
3382#endif
3383extern void __kmp_reap_worker(kmp_info_t *th);
3384extern void __kmp_terminate_thread(int gtid);
3385
3386extern int __kmp_try_suspend_mx(kmp_info_t *th);
3387extern void __kmp_lock_suspend_mx(kmp_info_t *th);
3388extern void __kmp_unlock_suspend_mx(kmp_info_t *th);
3389
3390extern void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag);
3391extern void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag);
3392extern void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag);
3393extern void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag);
3394extern void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag);
3395extern void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag);
3396
3397extern void __kmp_elapsed(double *);
3398extern void __kmp_elapsed_tick(double *);
3399
3400extern void __kmp_enable(int old_state);
3401extern void __kmp_disable(int *old_state);
3402
3403extern void __kmp_thread_sleep(int millis);
3404
3405extern void __kmp_common_initialize(void);
3406extern void __kmp_common_destroy(void);
3407extern void __kmp_common_destroy_gtid(int gtid);
3408
3409#if KMP_OS_UNIX
3410extern void __kmp_register_atfork(void);
3411#endif
3412extern void __kmp_suspend_initialize(void);
3413extern void __kmp_suspend_initialize_thread(kmp_info_t *th);
3414extern void __kmp_suspend_uninitialize_thread(kmp_info_t *th);
3415
3416extern kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team,
3417 int tid);
3418extern kmp_team_t *
3419__kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc,
3420#if OMPT_SUPPORT
3421 ompt_data_t ompt_parallel_data,
3422#endif
3423 kmp_proc_bind_t proc_bind, kmp_internal_control_t *new_icvs,
3424 int argc USE_NESTED_HOT_ARG(kmp_info_t *thr));
3425extern void __kmp_free_thread(kmp_info_t *);
3426extern void __kmp_free_team(kmp_root_t *,
3427 kmp_team_t *USE_NESTED_HOT_ARG(kmp_info_t *));
3428extern kmp_team_t *__kmp_reap_team(kmp_team_t *);
3429
3430/* ------------------------------------------------------------------------ */
3431
3432extern void __kmp_initialize_bget(kmp_info_t *th);
3433extern void __kmp_finalize_bget(kmp_info_t *th);
3434
3435KMP_EXPORT void *kmpc_malloc(size_t size);
3436KMP_EXPORT void *kmpc_aligned_malloc(size_t size, size_t alignment);
3437KMP_EXPORT void *kmpc_calloc(size_t nelem, size_t elsize);
3438KMP_EXPORT void *kmpc_realloc(void *ptr, size_t size);
3439KMP_EXPORT void kmpc_free(void *ptr);
3440
3441/* declarations for internal use */
3442
3443extern int __kmp_barrier(enum barrier_type bt, int gtid, int is_split,
3444 size_t reduce_size, void *reduce_data,
3445 void (*reduce)(void *, void *));
3446extern void __kmp_end_split_barrier(enum barrier_type bt, int gtid);
3447extern int __kmp_barrier_gomp_cancel(int gtid);
3448
3453enum fork_context_e {
3454 fork_context_gnu,
3456 fork_context_intel,
3457 fork_context_last
3458};
3459extern int __kmp_fork_call(ident_t *loc, int gtid,
3460 enum fork_context_e fork_context, kmp_int32 argc,
3461 microtask_t microtask, launch_t invoker,
3462/* TODO: revert workaround for Intel(R) 64 tracker #96 */
3463#if (KMP_ARCH_ARM || KMP_ARCH_X86_64 || KMP_ARCH_AARCH64) && KMP_OS_LINUX
3464 va_list *ap
3465#else
3466 va_list ap
3467#endif
3468 );
3469
3470extern void __kmp_join_call(ident_t *loc, int gtid
3471#if OMPT_SUPPORT
3472 ,
3473 enum fork_context_e fork_context
3474#endif
3475 ,
3476 int exit_teams = 0);
3477
3478extern void __kmp_serialized_parallel(ident_t *id, kmp_int32 gtid);
3479extern void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team);
3480extern void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team);
3481extern int __kmp_invoke_task_func(int gtid);
3482extern void __kmp_run_before_invoked_task(int gtid, int tid,
3483 kmp_info_t *this_thr,
3484 kmp_team_t *team);
3485extern void __kmp_run_after_invoked_task(int gtid, int tid,
3486 kmp_info_t *this_thr,
3487 kmp_team_t *team);
3488
3489// should never have been exported
3490KMP_EXPORT int __kmpc_invoke_task_func(int gtid);
3491extern int __kmp_invoke_teams_master(int gtid);
3492extern void __kmp_teams_master(int gtid);
3493extern int __kmp_aux_get_team_num();
3494extern int __kmp_aux_get_num_teams();
3495extern void __kmp_save_internal_controls(kmp_info_t *thread);
3496extern void __kmp_user_set_library(enum library_type arg);
3497extern void __kmp_aux_set_library(enum library_type arg);
3498extern void __kmp_aux_set_stacksize(size_t arg);
3499extern void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid);
3500extern void __kmp_aux_set_defaults(char const *str, int len);
3501
3502/* Functions called from __kmp_aux_env_initialize() in kmp_settings.cpp */
3503void kmpc_set_blocktime(int arg);
3504void ompc_set_nested(int flag);
3505void ompc_set_dynamic(int flag);
3506void ompc_set_num_threads(int arg);
3507
3508extern void __kmp_push_current_task_to_thread(kmp_info_t *this_thr,
3509 kmp_team_t *team, int tid);
3510extern void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr);
3511extern kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
3512 kmp_tasking_flags_t *flags,
3513 size_t sizeof_kmp_task_t,
3514 size_t sizeof_shareds,
3515 kmp_routine_entry_t task_entry);
3516extern void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
3517 kmp_team_t *team, int tid,
3518 int set_curr_task);
3519extern void __kmp_finish_implicit_task(kmp_info_t *this_thr);
3520extern void __kmp_free_implicit_task(kmp_info_t *this_thr);
3521
3522extern kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref,
3523 int gtid,
3524 kmp_task_t *task);
3525extern void __kmp_fulfill_event(kmp_event_t *event);
3526
3527int __kmp_execute_tasks_32(kmp_info_t *thread, kmp_int32 gtid,
3528 kmp_flag_32 *flag, int final_spin,
3529 int *thread_finished,
3530#if USE_ITT_BUILD
3531 void *itt_sync_obj,
3532#endif /* USE_ITT_BUILD */
3533 kmp_int32 is_constrained);
3534int __kmp_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
3535 kmp_flag_64 *flag, int final_spin,
3536 int *thread_finished,
3537#if USE_ITT_BUILD
3538 void *itt_sync_obj,
3539#endif /* USE_ITT_BUILD */
3540 kmp_int32 is_constrained);
3541int __kmp_execute_tasks_oncore(kmp_info_t *thread, kmp_int32 gtid,
3542 kmp_flag_oncore *flag, int final_spin,
3543 int *thread_finished,
3544#if USE_ITT_BUILD
3545 void *itt_sync_obj,
3546#endif /* USE_ITT_BUILD */
3547 kmp_int32 is_constrained);
3548
3549extern void __kmp_free_task_team(kmp_info_t *thread,
3550 kmp_task_team_t *task_team);
3551extern void __kmp_reap_task_teams(void);
3552extern void __kmp_wait_to_unref_task_teams(void);
3553extern void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team,
3554 int always);
3555extern void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team);
3556extern void __kmp_task_team_wait(kmp_info_t *this_thr, kmp_team_t *team
3557#if USE_ITT_BUILD
3558 ,
3559 void *itt_sync_obj
3560#endif /* USE_ITT_BUILD */
3561 ,
3562 int wait = 1);
3563extern void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread,
3564 int gtid);
3565
3566extern int __kmp_is_address_mapped(void *addr);
3567extern kmp_uint64 __kmp_hardware_timestamp(void);
3568
3569#if KMP_OS_UNIX
3570extern int __kmp_read_from_file(char const *path, char const *format, ...);
3571#endif
3572
3573/* ------------------------------------------------------------------------ */
3574//
3575// Assembly routines that have no compiler intrinsic replacement
3576//
3577
3578extern int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int npr, int argc,
3579 void *argv[]
3580#if OMPT_SUPPORT
3581 ,
3582 void **exit_frame_ptr
3583#endif
3584 );
3585
3586/* ------------------------------------------------------------------------ */
3587
3588KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags);
3589KMP_EXPORT void __kmpc_end(ident_t *);
3590
3591KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data,
3592 kmpc_ctor_vec ctor,
3593 kmpc_cctor_vec cctor,
3594 kmpc_dtor_vec dtor,
3595 size_t vector_length);
3596KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data,
3597 kmpc_ctor ctor, kmpc_cctor cctor,
3598 kmpc_dtor dtor);
3599KMP_EXPORT void *__kmpc_threadprivate(ident_t *, kmp_int32 global_tid,
3600 void *data, size_t size);
3601
3602KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *);
3603KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *);
3604KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *);
3605KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *);
3606
3607KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *);
3608KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs,
3609 kmpc_micro microtask, ...);
3610
3611KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid);
3612KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid);
3613
3614KMP_EXPORT void __kmpc_flush(ident_t *);
3615KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid);
3616KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
3617KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
3618KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid);
3619KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid);
3620KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid,
3621 kmp_critical_name *);
3622KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid,
3623 kmp_critical_name *);
3624KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid,
3625 kmp_critical_name *, uint32_t hint);
3626
3627KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid);
3628KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid);
3629
3630KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *,
3631 kmp_int32 global_tid);
3632
3633KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
3634KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
3635
3636KMP_EXPORT void KMPC_FOR_STATIC_INIT(ident_t *loc, kmp_int32 global_tid,
3637 kmp_int32 schedtype, kmp_int32 *plastiter,
3638 kmp_int *plower, kmp_int *pupper,
3639 kmp_int *pstride, kmp_int incr,
3640 kmp_int chunk);
3641
3642KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
3643
3644KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
3645 size_t cpy_size, void *cpy_data,
3646 void (*cpy_func)(void *, void *),
3647 kmp_int32 didit);
3648
3649extern void KMPC_SET_NUM_THREADS(int arg);
3650extern void KMPC_SET_DYNAMIC(int flag);
3651extern void KMPC_SET_NESTED(int flag);
3652
3653/* OMP 3.0 tasking interface routines */
3654KMP_EXPORT kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
3655 kmp_task_t *new_task);
3656KMP_EXPORT kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
3657 kmp_int32 flags,
3658 size_t sizeof_kmp_task_t,
3659 size_t sizeof_shareds,
3660 kmp_routine_entry_t task_entry);
3661KMP_EXPORT kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
3662 kmp_int32 flags,
3663 size_t sizeof_kmp_task_t,
3664 size_t sizeof_shareds,
3665 kmp_routine_entry_t task_entry,
3666 kmp_int64 device_id);
3667KMP_EXPORT void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
3668 kmp_task_t *task);
3669KMP_EXPORT void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
3670 kmp_task_t *task);
3671KMP_EXPORT kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
3672 kmp_task_t *new_task);
3673KMP_EXPORT kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid);
3674
3675KMP_EXPORT kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid,
3676 int end_part);
3677
3678#if TASK_UNUSED
3679void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task);
3680void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
3681 kmp_task_t *task);
3682#endif // TASK_UNUSED
3683
3684/* ------------------------------------------------------------------------ */
3685
3686KMP_EXPORT void __kmpc_taskgroup(ident_t *loc, int gtid);
3687KMP_EXPORT void __kmpc_end_taskgroup(ident_t *loc, int gtid);
3688
3689KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(
3690 ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps,
3691 kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
3692 kmp_depend_info_t *noalias_dep_list);
3693KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid,
3694 kmp_int32 ndeps,
3695 kmp_depend_info_t *dep_list,
3696 kmp_int32 ndeps_noalias,
3697 kmp_depend_info_t *noalias_dep_list);
3698extern kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
3699 bool serialize_immediate);
3700
3701KMP_EXPORT kmp_int32 __kmpc_cancel(ident_t *loc_ref, kmp_int32 gtid,
3702 kmp_int32 cncl_kind);
3703KMP_EXPORT kmp_int32 __kmpc_cancellationpoint(ident_t *loc_ref, kmp_int32 gtid,
3704 kmp_int32 cncl_kind);
3705KMP_EXPORT kmp_int32 __kmpc_cancel_barrier(ident_t *loc_ref, kmp_int32 gtid);
3706KMP_EXPORT int __kmp_get_cancellation_status(int cancel_kind);
3707
3708KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask);
3709KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask);
3710KMP_EXPORT void __kmpc_taskloop(ident_t *loc, kmp_int32 gtid, kmp_task_t *task,
3711 kmp_int32 if_val, kmp_uint64 *lb,
3712 kmp_uint64 *ub, kmp_int64 st, kmp_int32 nogroup,
3713 kmp_int32 sched, kmp_uint64 grainsize,
3714 void *task_dup);
3715KMP_EXPORT void *__kmpc_task_reduction_init(int gtid, int num_data, void *data);
3716KMP_EXPORT void *__kmpc_taskred_init(int gtid, int num_data, void *data);
3717KMP_EXPORT void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d);
3718KMP_EXPORT void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid,
3719 int is_ws, int num,
3720 void *data);
3721KMP_EXPORT void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws,
3722 int num, void *data);
3723KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid,
3724 int is_ws);
3725KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(
3726 ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins,
3727 kmp_task_affinity_info_t *affin_list);
3728
3729/* Lock interface routines (fast versions with gtid passed in) */
3730KMP_EXPORT void __kmpc_init_lock(ident_t *loc, kmp_int32 gtid,
3731 void **user_lock);
3732KMP_EXPORT void __kmpc_init_nest_lock(ident_t *loc, kmp_int32 gtid,
3733 void **user_lock);
3734KMP_EXPORT void __kmpc_destroy_lock(ident_t *loc, kmp_int32 gtid,
3735 void **user_lock);
3736KMP_EXPORT void __kmpc_destroy_nest_lock(ident_t *loc, kmp_int32 gtid,
3737 void **user_lock);
3738KMP_EXPORT void __kmpc_set_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
3739KMP_EXPORT void __kmpc_set_nest_lock(ident_t *loc, kmp_int32 gtid,
3740 void **user_lock);
3741KMP_EXPORT void __kmpc_unset_lock(ident_t *loc, kmp_int32 gtid,
3742 void **user_lock);
3743KMP_EXPORT void __kmpc_unset_nest_lock(ident_t *loc, kmp_int32 gtid,
3744 void **user_lock);
3745KMP_EXPORT int __kmpc_test_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
3746KMP_EXPORT int __kmpc_test_nest_lock(ident_t *loc, kmp_int32 gtid,
3747 void **user_lock);
3748
3749KMP_EXPORT void __kmpc_init_lock_with_hint(ident_t *loc, kmp_int32 gtid,
3750 void **user_lock, uintptr_t hint);
3751KMP_EXPORT void __kmpc_init_nest_lock_with_hint(ident_t *loc, kmp_int32 gtid,
3752 void **user_lock,
3753 uintptr_t hint);
3754
3755/* Interface to fast scalable reduce methods routines */
3756
3757KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(
3758 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
3759 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
3760 kmp_critical_name *lck);
3761KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
3762 kmp_critical_name *lck);
3763KMP_EXPORT kmp_int32 __kmpc_reduce(
3764 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
3765 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
3766 kmp_critical_name *lck);
3767KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
3768 kmp_critical_name *lck);
3769
3770/* Internal fast reduction routines */
3771
3772extern PACKED_REDUCTION_METHOD_T __kmp_determine_reduction_method(
3773 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
3774 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
3775 kmp_critical_name *lck);
3776
3777// this function is for testing set/get/determine reduce method
3778KMP_EXPORT kmp_int32 __kmp_get_reduce_method(void);
3779
3780KMP_EXPORT kmp_uint64 __kmpc_get_taskid();
3781KMP_EXPORT kmp_uint64 __kmpc_get_parent_taskid();
3782
3783// C++ port
3784// missing 'extern "C"' declarations
3785
3786KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc);
3787KMP_EXPORT void __kmpc_pop_num_threads(ident_t *loc, kmp_int32 global_tid);
3788KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
3789 kmp_int32 num_threads);
3790
3791KMP_EXPORT void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
3792 int proc_bind);
3793KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
3794 kmp_int32 num_teams,
3795 kmp_int32 num_threads);
3796KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc,
3797 kmpc_micro microtask, ...);
3798struct kmp_dim { // loop bounds info casted to kmp_int64
3799 kmp_int64 lo; // lower
3800 kmp_int64 up; // upper
3801 kmp_int64 st; // stride
3802};
3803KMP_EXPORT void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
3804 kmp_int32 num_dims,
3805 const struct kmp_dim *dims);
3806KMP_EXPORT void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid,
3807 const kmp_int64 *vec);
3808KMP_EXPORT void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid,
3809 const kmp_int64 *vec);
3810KMP_EXPORT void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
3811
3812KMP_EXPORT void *__kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid,
3813 void *data, size_t size,
3814 void ***cache);
3815
3816// Symbols for MS mutual detection.
3817extern int _You_must_link_with_exactly_one_OpenMP_library;
3818extern int _You_must_link_with_Intel_OpenMP_library;
3819#if KMP_OS_WINDOWS && (KMP_VERSION_MAJOR > 4)
3820extern int _You_must_link_with_Microsoft_OpenMP_library;
3821#endif
3822
3823// The routines below are not exported.
3824// Consider making them 'static' in corresponding source files.
3825void kmp_threadprivate_insert_private_data(int gtid, void *pc_addr,
3826 void *data_addr, size_t pc_size);
3827struct private_common *kmp_threadprivate_insert(int gtid, void *pc_addr,
3828 void *data_addr,
3829 size_t pc_size);
3830void __kmp_threadprivate_resize_cache(int newCapacity);
3831void __kmp_cleanup_threadprivate_caches();
3832
3833// ompc_, kmpc_ entries moved from omp.h.
3834#if KMP_OS_WINDOWS
3835#define KMPC_CONVENTION __cdecl
3836#else
3837#define KMPC_CONVENTION
3838#endif
3839
3840#ifndef __OMP_H
3841typedef enum omp_sched_t {
3842 omp_sched_static = 1,
3843 omp_sched_dynamic = 2,
3844 omp_sched_guided = 3,
3845 omp_sched_auto = 4
3846} omp_sched_t;
3847typedef void *kmp_affinity_mask_t;
3848#endif
3849
3850KMP_EXPORT void KMPC_CONVENTION ompc_set_max_active_levels(int);
3851KMP_EXPORT void KMPC_CONVENTION ompc_set_schedule(omp_sched_t, int);
3852KMP_EXPORT int KMPC_CONVENTION ompc_get_ancestor_thread_num(int);
3853KMP_EXPORT int KMPC_CONVENTION ompc_get_team_size(int);
3854KMP_EXPORT int KMPC_CONVENTION
3855kmpc_set_affinity_mask_proc(int, kmp_affinity_mask_t *);
3856KMP_EXPORT int KMPC_CONVENTION
3857kmpc_unset_affinity_mask_proc(int, kmp_affinity_mask_t *);
3858KMP_EXPORT int KMPC_CONVENTION
3859kmpc_get_affinity_mask_proc(int, kmp_affinity_mask_t *);
3860
3861KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize(int);
3862KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize_s(size_t);
3863KMP_EXPORT void KMPC_CONVENTION kmpc_set_library(int);
3864KMP_EXPORT void KMPC_CONVENTION kmpc_set_defaults(char const *);
3865KMP_EXPORT void KMPC_CONVENTION kmpc_set_disp_num_buffers(int);
3866
3867enum kmp_target_offload_kind {
3868 tgt_disabled = 0,
3869 tgt_default = 1,
3870 tgt_mandatory = 2
3871};
3872typedef enum kmp_target_offload_kind kmp_target_offload_kind_t;
3873// Set via OMP_TARGET_OFFLOAD if specified, defaults to tgt_default otherwise
3874extern kmp_target_offload_kind_t __kmp_target_offload;
3875extern int __kmpc_get_target_offload();
3876
3877// Constants used in libomptarget
3878#define KMP_DEVICE_DEFAULT -1 // This is libomptarget's default device.
3879#define KMP_HOST_DEVICE -10 // This is what it is in libomptarget, go figure.
3880#define KMP_DEVICE_ALL -11 // This is libomptarget's "all devices".
3881
3882// OMP Pause Resource
3883
3884// The following enum is used both to set the status in __kmp_pause_status, and
3885// as the internal equivalent of the externally-visible omp_pause_resource_t.
3886typedef enum kmp_pause_status_t {
3887 kmp_not_paused = 0, // status is not paused, or, requesting resume
3888 kmp_soft_paused = 1, // status is soft-paused, or, requesting soft pause
3889 kmp_hard_paused = 2 // status is hard-paused, or, requesting hard pause
3890} kmp_pause_status_t;
3891
3892// This stores the pause state of the runtime
3893extern kmp_pause_status_t __kmp_pause_status;
3894extern int __kmpc_pause_resource(kmp_pause_status_t level);
3895extern int __kmp_pause_resource(kmp_pause_status_t level);
3896// Soft resume sets __kmp_pause_status, and wakes up all threads.
3897extern void __kmp_resume_if_soft_paused();
3898// Hard resume simply resets the status to not paused. Library will appear to
3899// be uninitialized after hard pause. Let OMP constructs trigger required
3900// initializations.
3901static inline void __kmp_resume_if_hard_paused() {
3902 if (__kmp_pause_status == kmp_hard_paused) {
3903 __kmp_pause_status = kmp_not_paused;
3904 }
3905}
3906
3907extern void __kmp_omp_display_env(int verbose);
3908
3909#ifdef __cplusplus
3910}
3911#endif
3912
3913#endif /* KMP_H */
struct ident ident_t
@ KMP_IDENT_KMPC
Definition kmp.h:185
@ KMP_IDENT_IMB
Definition kmp.h:183
@ KMP_IDENT_WORK_LOOP
Definition kmp.h:203
@ KMP_IDENT_BARRIER_IMPL
Definition kmp.h:194
@ KMP_IDENT_WORK_SECTIONS
Definition kmp.h:205
@ KMP_IDENT_AUTOPAR
Definition kmp.h:188
@ KMP_IDENT_ATOMIC_HINT_MASK
Definition kmp.h:212
@ KMP_IDENT_WORK_DISTRIBUTE
Definition kmp.h:207
@ KMP_IDENT_BARRIER_EXPL
Definition kmp.h:192
@ KMP_IDENT_ATOMIC_REDUCE
Definition kmp.h:190
KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *)
KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro microtask,...)
KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_teams, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs, kmpc_micro microtask,...)
KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid)
void(* kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
Definition kmp.h:1395
KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags)
KMP_EXPORT void __kmpc_end(ident_t *)
KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck)
KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck)
KMP_EXPORT kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void(*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck)
KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_flush(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void(*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck)
KMP_EXPORT void * __kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d)
KMP_EXPORT void * __kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, int num, void *data)
KMP_EXPORT void * __kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num, void *data)
KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask)
KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws)
KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list)
KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins, kmp_task_affinity_info_t *affin_list)
KMP_EXPORT void * __kmpc_task_reduction_init(int gtid, int num_data, void *data)
KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask)
KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list)
KMP_EXPORT void * __kmpc_taskred_init(int gtid, int num_data, void *data)
void(* kmpc_dtor)(void *)
Definition kmp.h:1419
void *(* kmpc_cctor)(void *, void *)
Definition kmp.h:1426
KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data, kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor)
KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid, size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *), kmp_int32 didit)
void *(* kmpc_cctor_vec)(void *, void *, size_t)
Definition kmp.h:1448
void *(* kmpc_ctor)(void *)
Definition kmp.h:1413
void *(* kmpc_ctor_vec)(void *, size_t)
Definition kmp.h:1436
KMP_EXPORT void * __kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid, void *data, size_t size, void ***cache)
void(* kmpc_dtor_vec)(void *, size_t)
Definition kmp.h:1442
KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data, kmpc_ctor_vec ctor, kmpc_cctor_vec cctor, kmpc_dtor_vec dtor, size_t vector_length)
KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc)
KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *)
KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid, kmp_critical_name *)
KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid)
sched_type
Definition kmp.h:336
KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid)
void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_int32 lb, kmp_int32 ub, kmp_int32 st, kmp_int32 chunk)
KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid, kmp_critical_name *)
@ kmp_nm_guided_chunked
Definition kmp.h:387
@ kmp_sch_runtime_simd
Definition kmp.h:358
@ kmp_nm_ord_auto
Definition kmp.h:406
@ kmp_sch_auto
Definition kmp.h:343
@ kmp_nm_auto
Definition kmp.h:389
@ kmp_distribute_static_chunked
Definition kmp.h:374
@ kmp_sch_static
Definition kmp.h:339
@ kmp_sch_guided_simd
Definition kmp.h:357
@ kmp_sch_modifier_monotonic
Definition kmp.h:424
@ kmp_sch_default
Definition kmp.h:444
@ kmp_sch_modifier_nonmonotonic
Definition kmp.h:426
@ kmp_nm_ord_static
Definition kmp.h:402
@ kmp_distribute_static
Definition kmp.h:375
@ kmp_sch_guided_chunked
Definition kmp.h:341
@ kmp_nm_static
Definition kmp.h:385
@ kmp_sch_lower
Definition kmp.h:337
@ kmp_nm_upper
Definition kmp.h:408
@ kmp_ord_lower
Definition kmp.h:363
@ kmp_ord_static
Definition kmp.h:365
@ kmp_sch_upper
Definition kmp.h:361
@ kmp_ord_upper
Definition kmp.h:371
@ kmp_nm_lower
Definition kmp.h:381
@ kmp_ord_auto
Definition kmp.h:369
Definition kmp.h:222
kmp_int32 reserved_1
Definition kmp.h:223
char const * psource
Definition kmp.h:232
kmp_int32 reserved_2
Definition kmp.h:226
kmp_int32 reserved_3
Definition kmp.h:231
kmp_int32 flags
Definition kmp.h:224