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1 Introduction

The ordinal calculator is a tool for learning about the ordinal hierarchy and ordinal nota-
tions. It is also a research tool. Its motivating goal is ultimately to expand the foundations
of mathematics by using computer technology to manage the combinatorial explosion in
complexity that comes with explicitly defining the recursive ordinals implicitly defined by
the axioms of Zermelo Frankel set theory[4, 2]. The underlying philosophy focuses on what
formal systems tell us about physically realizable combinatorial processes.[3].

Appendix A “Using the ordinal calculator” is the user’s manual for the interactive mode
of this program. It describes how to download the program and use it from the command
line. It is available as a separate manual at: www.mtnmath.com/ord/ordCalc.pdf. This
document is intended for those who want to understand the theory on which the program is
based, understand the structure of the program or use and expand the program in C++.

All the source code and documentation (including this manual) is licensed for use and
distribution under the GNU General Public License, version 2.
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1.1 Intended audience

This document is targeted to mathematicians with limited experience in computer program-
ming and computer scientists with limited knowledge of the foundations of mathematics.
Thus it contains substantial tutorial material, often as footnotes. The ideas in this paper
have been implemented in the C++ programming language. C++ keywords and constructs
defined in this program are in teletype font. This paper is both a top level introduction
to this computer code and a description of the theory that the code is based on. The C++
tutorial material in this paper is intended to make the paper self contained for someone not
familiar with the language. However it is not intended as programming tutorial. Anyone
unfamiliar with C++, who wants to modify the code in a significant way, should consult one
of the many tutorial texts on the language. By using the command line interface described
in Appendix A, one can use many of the facilities of the program interactively with no
knowledge of C++.

1.2 The Ordinals

The ordinals are the backbone of mathematics. They generalize induction on the integers1

in an open ended way. More powerful modes of induction are defined by defining larger
ordinals and not by creating new laws of induction.

The smallest ordinals are the integers. Other ordinals are defined as infinite sets2. The
smallest infinite ordinal is the set of all integers. Infinite objects are not subject to com-
putational manipulation. However the set of all integers can be represented by a computer
program that lists the integers. This is an abstraction. Real programs cannot run forever
error free. However the program itself is a finite object, a set of instructions, that a computer
program can manipulate and transform. Ordinals at or beyond ω may or may not exist as
infinite objects in some ideal abstract reality, but many of them can have their structure
represented by a computer program. This does not extend to ordinals that are not countable,
but it can extend beyond the recursive ordinals3.

1Induction on the integers states that a property holds for every integer n ≥ 0, if it is true of 0 and if,
for any integer x, if it is true for x, it must be true for x+ 1.
[p(0) ∧ ∀x∈Np(x)→ p(x+ 1)]→ ∀x∈Np(x)

2In set theory 0 is the empty set. 1 is the set containing the empty set. 2 is the set containing 0 and
1. Each finite integer is the union of all smaller integers. Infinite ordinals are also constructed by taking
the union of all smaller ones. There are three types of Ordinals. 0 or the empty set is the smallest ordinal
and the only one not defined by operations on previously defined ordinals. The successor to an ordinal a is
the union of a and the members of a. In addition to 0 and successor ordinals, there are limit ordinals. The
smallest limit ordinal is the set of all integers or all finite successors of 0 called ω.

Ordinals are well ordered by the relation of set membership, ∈. For any two ordinals a and b either a ∈ b,
b ∈ a or a = b.

A limit ordinal consists of an infinite collection of ordinals that has no maximal or largest element. For
example there is no single largest integer. Adding one to the largest that has been defined creates a larger
integer.

3The recursive ordinals are those whose structure can be fully enumerated by an ideal computer program
that runs forever. For any recursive ordinal a there exists a computer program that can enumerate a unique
symbol or notation for every ordinal less than a. For any two notations for ordinals less than a, there is
recursive algorithm that can determine the relative ranking (less than, equal to or greater than) of the two
ordinals. Larger countable ordinals cannot have their structure fully enumerated by a recursive process. but
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Ordinal notations assign unique finite strings to a subset of the countable ordinals. As-
sociated with a notation system is a recursive algorithm to rank ordinal notations (<, >
and =). For recursive ordinals there is also an algorithm that, given an input notation for
some ordinal α, enumerates notations of all smaller ordinals. This latter algorithm cannot
exist for ordinals that are not recursive but an incomplete variant of it can be defined for
countable ordinals.

The ultimate goal of this research is to construct notations for large recursive ordinals
eventually leading to and beyond a recursive ordinal that captures the combinatorial strength
of Zermelo-Frankel set theory (ZF4) and thus is strong enough to prove its consistency.
Computers can help to deal with the inevitable complexity of strong systems of notations.
They allow experiments to tests ones intuition. Thus a system of notations implemented
in a computer program may be able to progress significantly beyond what is possible with
pencil and paper alone.

2 Ordinal notations

The ordinals whose structure can be enumerated by an ideal computer program are called
recursive. The smallest ordinal that is not recursive is the Church-Kleene ordinal ωCK1 . For
simplicity this is written as ω1

5. Here the focus is on notations for recursive ordinals. The set
that defines a specific ordinal in set theory is unique, but there are many different computer
programs that can enumerate the structure of the same recursive ordinal. A system of
recursive representations or notations for recursive ordinals, must recursively determine the
relative size of any two notations. This is best done with a unique notation or normal form
for each ordinal represented. Thus an ordinal notation system should satisfy the following
requirements:

1. There is a unique finite string of symbols that represents every ordinal within the
system. These are ordinal notations.

2. There is an algorithm (or computer program) that can determine for every two ordinal
notations a and b if a < b or a > b or a = b6. One and only one of these three must
hold for every pair of ordinal notations in the system.

3. There is an algorithm that, given an ordinal notation a as input, will output an infinite
sequence of ordinal notations, bi < a for all integers i. These outputs must satisfy the

they can be defined as properties of recursive processes that operate on a partially enumerable domain. For
more about this see Section 8.

4 ZF is the widely used Zermelo-Frankel formulation of set theory. It can be thought of as a one page
computer program for enumerating theorems. See either of the references [4, 2] for these axioms. Writing
programs that define notations for the recursive ordinals definable in ZF can be thought of as an attempt to
make explicit the combinatorial structures implicitly defined in ZF.

5 ω1 is most commonly used to represent the ordinal of the countable ordinals (the smallest ordinal that
is not countable). Since this paper does not deal with uncountable sets (accept indirectly in describing an
existing approach to ordinal collapsing in Section 8.4) we can simplify the notation for ωCK1 to ω1.

6 In set theory the relative size of two ordinals is determined by which is a member, ∈, of the other.
Because notations must be finite strings, this will not work in a computational approach. An explicit
algorithm is used to rank the size of notations.
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property that eventually every ordinal notation c < a will be output if we recursively
apply this algorithm to a and to every notation the algorithm outputs either directly
or indirectly.

4. Each ordinal notation must represent a unique ordinal as defined in set theory. The
union of the ordinals represented by the notations output by the algorithm defined in
the previous item must be equal to the ordinal represented by a.

By generalizing induction on the integers, the ordinals are central to the power of math-
ematics7. The larger the recursive ordinals that are provably definable within a system the
more powerful it is, at least in terms of its ability to solve consistency questions.

Set theoretical approaches to the ordinals can mask the combinatorial structure that the
ordinals implicitly define. This can be a big advantage in simplifying proofs, but it is only
through the explicit development of that combinatorial structure that one can fully under-
stand the ordinals. That understanding may be crucial to expanding the ordinal hierarchy.
Beyond a certain point this is not possible without using computers as a research tool.

2.1 Ordinal functions and fixed points

Notations for ordinals are usually defined with strictly increasing ordinal functions on the
countable ordinals. A fixed point of a function f is an ordinal a with f(a) = a. For
example f(x) = n + x has every limit ordinal as a fixed point provided n is an integer.
The Veblen hierarchy of ordinal notations is constructed by starting with the function ωx.
Using this function, new functions are defined as a sequence of fixed points of previous
functions[15, 11, 6]. The first of these functions, ϕ(1, α) enumerates the fixed points of ωα.
ϕ(1, α) = εα.

The range and domain of these functions are an expandable collection of ordinal notations
defined by C++ class, Ordinal. The computational analog of fixed points in set theory
involves the extension of an existing notation system. A fixed point can be thought of
as representing the union of all notations that can be obtained by finite combinations of
existing operations on existing ordinal notations. To represent this fixed point ordinal, the
notation system must be expanded to include a new symbol for this ordinal. In addition the
algorithms that operate on notations must be expanded to handle the additional symbol. In
particular the recursive process that satisfies item 3 on page 6 must be expanded. The goal
is to do more than add a single new symbol for a single fixed point. The idea is to define
powerful expansions that add a rich hierarchy of symbolic representations of larger ordinals.

The simplest example of a fixed point is ω the ordinal for the integers. It cannot be
reached by any finite sequence of integer additions. Starting with a finite integer and adding

7 To prove a property is true for some ordinal, a, one must prove the following.

1. It is true of 0.

2. If it is true for any ordinal b < a it must be true of the successor of b or b+ 1.

3. If it is true for a sequence of ordinals ci such that
⋃
i ci = c and c ≤ a, then it is true of c.
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ω to it cannot get past ω. n + ω = ω for all finite integers n.8 The first fixed point for the

function, ωx, is the ordinal ε0 = ω + ωω + ω(ωω) + ω(ω(ωω)) + .... (The parenthesis in this
equation are included to make the order of the exponentiation operations clear. They will
sometimes be omitted and assumed implicitly from now on.) ε0 represents the union of the
ordinals represented by notations that can be obtained from finite sequences of operations
starting with notations for the ordinals 0 and ω and the ordinal notation operations of
successor (+1), addition, multiplication and exponentiation.

2.2 Beyond the recursive ordinals

The class Ordinal is not restricted to notations for recursive ordinals. Admissible ordinals
extend the concept of recursive ordinals by considering ordinal notations defined by Turing
Machines (TM) with oracles9[9]. There is an alternative way to extend the idea of recursive
notations for ordinals that does not involve the completed infinite set required to define an
oracle. It is more appropriate for a computational approach to the ordinals. The recursive
ordinals can be characterized by recursive processes that map integers to either processes
like themselves or integers. That is a computer program that accepts an integer as input
and outputs either a computer program like itself or an integer.

For such a computer program to represent the structure of an ordinal it must be well
founded10. This means, if one applies any infinite sequence of integer inputs to the base
program, it will terminate11 Of course it must meet all the other requirements for a notation
system.

A recursive process satisfying the requirements on page 6 is well founded and represents
the structure of a recursive ordinal. It has been shown that the concept of recursive process
well founded for infinite sequences of integers can fully characterize the recursive ordinals[13].
One can generalize this idea to recursive processes well founded for an infinite sequences of
notations for recursive ordinals. And of course one can iterate this definition in simple and
complex ways. In this way one can define countable ordinals > ωCK1 as properties of recursive
processes. In contrast to recursive ordinal notations, notations for larger ordinals cannot be
associated with algorithms that fully enumerate the structure of the ordinal they represent.
However it is possible to define a recursive function that in some ways serves as a substitute
(see Section 8.1 on limitOrd).

8A fixed point for addition is called a principal additive ordinal. Any ordinal a > 0 such that a + b = b
for all a < b is an additive principle ordinal.

9A TM oracle is an external device that a TM can query to answer questions that are recursively unsolvable
like the computer halting problem. One can assume the existence of an infinite set (not recursive or recursively
enumerable) that defines a notation system for all recursive ordinals and consider what further notations are
definable by a recursive process with access to this oracle.

10In mathematics a well founded relationship is one with no infinite descending chains. Any collection of
objects ordered by the relationship must have a minimal element.

11The formulation of this property requires quantification over the reals and thus is considered impredica-
tive. (Impredicative sets have definitions that assume their own existence. Some reals can only be defined
by quantifying over the set of all reals and this makes them questionable for some mathematicians.) In a
computational approach one need not assume there is a set of all objects satisfying the property. Instead
one can regard it as a computationally useful property and build objects that satisfy it in an expanding
hierarchy. Impredictivity is replaced with explicit incompleteness.
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2.3 Uncountable ordinals

The ordinal of the countable ordinals, Ω, cannot have a computational interpretation in
the sense that term is used here. Uncountable ordinals exist in a through the looking glass
reality. It is consistent to argue about them because mathematics will always be incomplete.
The reals provably definable within a formal system form a definite totality. The formulas
that define them are recursively enumerable. They are uncountable from within the system
that defines them but they are countable when viewed externally.

Building incompleteness into the system from the ground up in lieu of claiming cardinality
has an absolute meaning will, I believe, lead to a more powerful and more understandable
mathematics. That is part of the reason I suspect a computational approach may extend
the ordinal hierarchy significantly beyond what is possible by conventional proofs. Writing
programs that define ordinal notations and operations on them provides powerful tools to
help deal with combinatorial complexity that may vastly exceed the limits of what can be
pursued with unaided human intelligence. This is true in most scientific fields and there is
no reason to think that the foundations of mathematics is an exception. The core of this
paper is C++ code that defines a notation system for an initial fragment of the recursive
ordinals and a subset of larger countable ordinals.

The development of this computational approach initially parallels the conventional ap-
proach through the Veblen hierarchy (described in Section 5). The C++ class Ordinal is
incompletely specified. C++ subclasses and virtual functions allow a continued expansion
of the class as described in the next section. The structure of the recursive ordinals defined
in the process are fully specified. Ordinals ≥ ωCK1 are partially specified.

Mathematics is an inherently creative activity. God did not create the integers, they like
every other infinite set, are a human conceptual creation designed to abstract and generalize
the real finite operations that God, or at least the forces of nature, did create. The anthology,
God Created the Integers[7], collects the major papers in the history of mathematics. From
these and the commentary it becomes clear that accepting any infinite totalities easily leads
one to something like ZF. If the integers are a completed totality, then the rationals are
ordered pairs of integers with 1 as their only common denominator. Reals are partitions of
the rationals into those less than a given real and those greater than that real. This is the
Dedekind cut. With the acceptance of that, one is well on the way to the power set axiom
and wondering about the continuum hypothesis12. This mathematics is not false or even
irrelevant, but it is only meaningful relative to a particular formal system. Thinking such
questions are absolute leads one down a primrose path of pursuing as absolute what is not
and cannot be objective truth beyond the confines of a particular formal system.

12The continuum hypothesis is the assertion that the reals have the smallest cardinality greater than the
cardinality of the integers. This means there is no set that the integers cannot be mapped onto and that
cannot be mapped onto the reals.
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3 Program structure

The C++ programming language13 has two related features, subclasses and virtual functions
that are useful in developing ordinal notations. The base class, Ordinal, is an open ended
programming structure that can be expanded with subclasses. It does not represent a specific
set of ordinals and it is not limited to notations for recursive ordinals. Any function that
takes Ordinal as an argument must allow any subclass of Ordinal to be passed to it as an
argument. The reverse does not hold.

3.1 virtual functions and subclasses

Virtual functions facilitate the expansion of the base class. For example there is a base
class virtual member function compare that returns 1, 0, or -1 if its argument (which
must be an element of class Ordinal) is less than, equal to or greater than the ordinal
notation it is a member function of. The base class defines notations for ordinals less
than ε0. As the base class is expanded, an extension of the compare virtual function
must be written to take care of cases involving ordinals greater than ε0. Programs that call
the compare function will continue to work properly. The correct version of compare will
automatically be invoked depending on the type of the object (ordinal notation) from which
compare is called. The original compare does not need to be changed but it does need to be
written with the expansion in mind. If the argument to compare is not in the base class

then the expanded function must be called. This can be done by calling compare recursively
using the argument to the original call to compare as the class instance from which compare

is called.
It may sound confusing to speak of subclasses as expanding a definition. The idea is that

the base class is the broadest class including all subclasses defined now or that might be
defined in the future. The subclass expands the objects in the base class by defining a
limited subset of new base class objects that are the only members of the subclass (until
and unless it gets expanded by its own subclasses). This is one way of dealing with the
inherent incompleteness of a computational approach to the ordinals.

3.2 Ordinal normal forms

Crucial to developing ordinal notations is to construct a unique representation for every
ordinal. The starting point for this is the Cantor normal form. Every ordinal, α, can be
represented by an expression of the following form:

α = ωα1n1 + ωα2n2 + ωα3n3 + ...+ ωαknk (1)

α1 > α2 > α3 > ... > αk

13C++ is an object oriented language combining functions and data in a class definition. The data and
code that form the class are referred to as class members. Calls to nonstatic member functions can only
be made from an instance of the class. Data class members in a member function definition refer to the
particular instance of the class from which the function is called.
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The αk are ordinals and the nk are integers > 0.

Because ε0 = ωε0 the Cantor normal form gives unique representation only for ordinals less
than ε0. This is handled by requiring that the normal form notation for a fixed point ordinal
be the simplest expression that represents the ordinal. For example, A notation for the
Veblen hierarchy used in this paper (see Section 5) defines ε0 as ϕ(1, 0). Thus the normal
form for ε0 would be ϕ(1, 0)14 not ωϕ(1,0). However ϕ(1, 0)2 is displayed as ωϕ(1,0)×2.

The Ordinal base class represents an ordinal as a linked list of terms of the form ωαknk.
This limits the unexpanded base class to ordinals of the form ωα where α is a previously
defined member of the base class. These are the ordinals less than ε0. The base class for
each term of an Ordinal is CantorNormalElement.

3.3 Memory management

Most infinite Ordinals are constructed from previously defined Ordinals. Those construc-
tions need to reference the ordinals used in defining them. The Ordinals used in the defi-
nition of another Ordinal must not be deleted while the object that uses them still exists.
This often requires that Ordinals be created using the new C++ construct. Objects declared
without using new are automatically deleted when the block in which they occur exits.

This program does not currently implement any garbage collection. Declaring many
Ordinals using new will eventually exhaust available memory.

4 Ordinal base class

The base class Ordinal15 includes all ordinals notations defined now or in the future in this
system. This class with no subclasses defines notations for the ordinals < ε0. Sections 6, 7
and 9 describe three subclasses that extend the notation system to large recursive ordinals
and to admissible countable ordinals.

The finite (integer) Ordinals and ω, the ordinal that contains all integers, are defined
using the constructor16 for class Ordinal.17. Other base class ordinals are usually defined
using expressions involving addition, multiplication and exponentiation (see Section 4.4) of
previously defined Ordinals.

The Ordinal for 12 is written as “const Ordinal& twelve = * new Ordinal(12)”18 in
C++. The Ordinals for zero, one and omega are defined in global name space ord19 The

14In the ordinal calculator ϕ(1, α) is displayed as εα.
15‘Ordinal’ when capitalized and in tty font, refers to the expandable C++ class of ordinal notations.
16The constructor of a class object is a special member function that creates an instance of the class

based on the parameters to the function.
17The integer ordinals are not defined in this program using the C++ int data type but a locally defined

Int data type that uses the Gnu Multiple Precision Arithmetic Library to allow for arbitrarily large integers
depending on the memory of the computer the program is run on.

18In the interactive ordinal calculator (see Appendix A) write “twelve = 12” or just use 12 in an expres-
sion.

19All global variables in this implementation are defined in the namespace ord. This simplifies integration
with existing programs. Such variables must have the prefix ‘ord::’ prepended to them or occur in a file in
which the statement “using namespace ord;” occurs before the variable is referenced.
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C++ code Ordinal

omega+12 ω + 12
omega*3 ω3
omega*3 + 12 ω3 + 12
omega^5 ω5

omega^(omega^12) ωω
12

(omega^(omega^12)*6) + (omega^omega)*8 +12 ωω
126 + ωω8 + 12

Table 1: Ordinal C++ code examples

Ordinals two through six are defined as members of class Ordinal20.
The standard operations for ordinal arithmetic (+, * for × and ^ for exponentiation) are

defined for all Ordinal instances. Expressions involving exponentiation must use parenthesis
to indicate precedence because C++ gives lower precedence to ^ then it does to addition and
multiplication21. In C++ the standard use of ^ is for the boolean operation exclusive or.
Some examples of infinite Ordinals created by Ordinal expressions are shown in Table 1.

Ordinals that are a sum of terms are made up of a sequence of instances of the class

CantorNormalElement each instance of this class contains an integer factor that multiplies
the term and an Ordinal exponent of ω. For finite ordinals this exponent is 0.

4.1 Ordinal::normalForm and Ordinal::texNormalForm

Two Ordinal member functions, normalForm and texNormalForm, return a C++ string

that can be output to display the value of an Ordinal in Cantor normal form or a variation
of it defined here for ordinals > ε0. normalForm creates a plain text format that is used for
input and plain text output in the interactive mode of this program described in Appendix A.
texNormalForm outputs a similar string in TEX math mode format. This string does not
include the ‘$’ markers to enter and exit TEX math mode. These must be added when this
output is included in a TEX document. There are examples of this output in Section A.11.3
on Display options. Many of the entries in the tables in this manual are generated using
texNormalForm.

4.2 Ordinal::compare member function

The compare function has a single Ordinal as an argument. It compares the Ordinal

instance it is a member of with its argument. It scans the terms of both Ordinals (see
equation 1) in order of decreasing significance. The exponent, αk and then the factor nk
are compared. If these are both equal the comparison proceeds to the next term of both
ordinals. compare is called recursively to compare the exponents (which are Ordinals) until
it resolves to comparing an integer with an infinite ordinal or another integer. It returns 1,
0 or -1 if the ordinal called from is greater than, equal to or less than its argument.

20Reference to members of class Ordinal must include the prefix “Ordinal::” except in member func-
tions of Ordinal

21The interactive mode of entering ordinal expressions (see Appendix A) has the desired precedence and
does not require parenthesis to perform exponentiation before multiplication.
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α =
∑
m=0,1,...,k ω

αmnm from equation 1
γ =

∑
m=0,1,...,k−1 ω

αmnm + ωαk(nk − 1)
Last Term (ωαknk) Condition α.limitElement(i)

αk = 0 (α is not a limit) UNDEFINED ABORT
αk = 1 γ + i
αk > 1 ∧ αk is a successor γ + ωαk−1i
αk is a limit γ + ω(αk).limitElement(i)

Table 2: Cases for computing Ordinal::limitElement

Ordinal limitElement

ω 1 2 10 100 786

ω8 ω7 + 1 ω7 + 2 ω7 + 10 ω7 + 100 ω7 + 786
ω2 ω ω2 ω10 ω100 ω786
ω3 ω2 ω22 ω210 ω2100 ω2786
ωω ω ω2 ω10 ω100 ω786

ωω+2 ωω+1 ωω+12 ωω+110 ωω+1100 ωω+1786

ωω
ωω

ωω
ω

ωω
ω2

ωω
ω10

ωω
ω100

ωω
ω786

Table 3: Ordinal::limitElement examples.

Each term of an ordinal (from Equation 1) is represented by an instance of class
CantorNormalElement and the bulk of the work of compare is done in member function
CantorNormalElement::compare This function compares two terms of the Cantor normal
form of an ordinal.

4.3 Ordinal::limitElement member function

Ordinal member function limitElement has a single integer parameter. It is only defined for
notations of limit ordinals and will abort if called from a successor Ordinal. Larger values
of this argument produce larger ordinal notations as output. The union of the ordinals
represented by the outputs for all integer inputs is equal to the ordinal represented by the
Ordinal instance limitElement is called from. This function satisfies requirement 3 on
page 6.

In the following description mathematical notation is mixed with C++ code. Thus
limitElement(i) called from an Ordinal class instance that represents ωα is written
as (ωα).limitElement(i).

The algorithm for limitElement uses the Cantor normal form in equation 1. The kernel
processing is done in CantorNormalElement::limitElement. limitElement operates on
the last or least significant term of the normal form. γ is used to represent all terms but the
least significant. If the lest significant term is infinite and has a factor, the nk in equation 1,
greater than 1, γ will also include the term ωαk(nk − 1). The outputs from limitElement

are γ and a final term that varies according to the conditions in Table 2. Table 3 gives some
examples.
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Operation Example Description

addition α + β add 1 to α β times
multiplication α× β add α β times
exponentiation αβ multiply α β times
nested exponentiation αβ

γ
multiply α βγ times

... ... ...

Table 4: Base class Ordinal operators.

Expression Cantor Normal Form C++ code

(ω4 + 12)ω ω2 (omega*4+12)*omega

ω(ω4 + 12) ω24 + ω12 omega*(omega*4+12)

ωω(ω+3) ωω
2+ω3 omega∧(omega*(omega+3))

(ω + 4)(ω + 5) ω2 + ω5 + 4 (omega+4)*(omega+5)

(ω + 2)(ω+2) ωω+2 + ωω+12 + ωω2 (omega+2)∧(omega+2)
ωω+3 + ωω+23+

(ω + 3)(ω+3) ωω+13 + ωω3 (omega+3)∧(omega+3)

Table 5: Ordinal arithmetic examples

4.4 Ordinal operators

The operators in the base class are built on the successor (or ‘+1’) operation and recursive
iteration of that operation. These are shown in Table 4.

The operators are addition, multiplication and exponentiation. These are implemented
as C++ overloaded operators: +, * and ^22 Arithmetic on the ordinals is not commutative,
3 + ω = ω 6= ω + 3, For this and other reasons, caution is required in writing expressions in
C++. Precedence and other rules used by the compiler are incorrect for ordinal arithmetic.
It is safest to use parenthesis to completely specify the intended operation. Some examples
are shown in Table 5.

4.4.1 Ordinal addition

In ordinal addition, all terms of the first operand that are at least a factor of ω smaller than
the leading term of the second cam be ignored because of the following:

α, β ordinals ∧ α ≥ β → β + α ∗ ω = α ∗ ω (2)

Ordinal addition operates in sequence on the terms of both operands. It starts with the
most significant terms. If they have the same exponents. their factors are added. Otherwise,
if the second operand’s exponent is larger than the first operand’s exponent, the remainder of
the first operand is ignored. Alternatively, if the second operands most significant exponent
is less than the first operands most significant exponent, the leading term of the first operand

22‘^’ is used for ‘exclusive or’ in C++ and has lower precedence than any arithmetic operator such as ‘+’.
Thus C++ will evaluate x^y+1 as x^(y+1). Use parenthesis to override this as in (x^y)+1.
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is added to the result. The remaining terms are compared in the way just described until all
terms of both operands have been dealt with.

4.4.2 Ordinal multiplication

Multiplication of infinite ordinals is complicated by the way addition works. For example:

(ω + 3)× 2 = (ω + 3) + (ω + 3) = ω × 2 + 3 (3)

Like addition, multiplication works with the leading (most significant) terms of each operand
in sequence. The operation that takes the product of terms is a member function of base class
CantorNormalElement. It can be overridden by subclasses without affecting the algorithm
than scans the terms of the two operands. When a subclass of Ordinal is added a subclass
of CantorNormalElement must also be added.

CantorNormalElement and each of its subclasses is assigned a codeLevel that grows
with the depth of class nesting. codeLevel for a CantorNormalElement is cantorCodeLevel.
Any Cantor normal form term that is of the form ωα will be at this level regardless of the
level of the terms of α. codeLevel determines when a higher level function needs to be
invoked. For example if we multiply α at cantorCodeLevel by β at a higher level then a
higher level routine must be used. This is accomplished by calling β.multiplyBy(α) which
will invoke the virtual function multiplyBy in the subclass β is an instance of.

The routine that multiplies two terms or CantorNormalElements first tests the codeLevel
of its operand and calls multiplyBy if necessary. If both operands are at cantorCodeLevel,
the routine checks if both operands are finite and, if so, returns their integer product. If the
first operand is finite and the second is infinite, the second operand is returned unchanged.
All remaining cases are handled by adding the exponents of the two operands and multi-
plying their factors. The exponents are the αi and the factors are the ni in Equation 1. A
CantorNormalElement with the computed exponent and factor is returned. If the exponents
contain terms higher then cantorCodeLevel, this will be dealt with by the routine that does
the addition of exponents.

The routine that multiplies single terms is called by a top level routine that scans the
terms of the operands. If the second operand does not have a finite term, then only the
most significant term of the first operand will affect the result by Equation 2. If the second
operand does end in a finite term then all but the most significant term of the first operand,
as illustrated by Equation 3, will be added to the result of multiplying the most significant
term of the first operand by all terms of the second operand in succession. Some examples
are shown in Table 6.

4.4.3 Ordinal exponentiation

Ordinal exponentiation first handles the cases when either argument is zero or one. It then
checks if both arguments are finite and, if so, does an integer exponentiation23. If the base
is finite and the exponent is infinite, the product of the infinite terms in the exponent is

23A large integer exponent can require more memory than is available to store the result and abort the
program.
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α β α× β
ω + 1 ω + 1 ω2 + ω + 1
ω + 1 ω + 2 ω2 + ω2 + 1
ω + 1 ω3 ω4

ω + 1 ω32 + 2 ω42 + ω2 + 1
ω + 1 ω4 + ω3 + ω7 + 3 ω5 + ω4 + ω27 + ω3 + 1
ω + 1 ωω3 ωω3
ω + 2 ω + 1 ω2 + ω + 2
ω + 2 ω + 2 ω2 + ω2 + 2
ω + 2 ω3 ω4

ω + 2 ω32 + 2 ω42 + ω2 + 2
ω + 2 ω4 + ω3 + ω7 + 3 ω5 + ω4 + ω27 + ω3 + 2
ω + 2 ωω3 ωω3
ω3 ω + 1 ω4 + ω3

ω3 ω + 2 ω4 + ω32
ω3 ω3 ω6

ω3 ω32 + 2 ω62 + ω32
ω3 ω4 + ω3 + ω7 + 3 ω7 + ω6 + ω47 + ω33
ω3 ωω3 ωω3

ω32 + 2 ω + 1 ω4 + ω32 + 2
ω32 + 2 ω + 2 ω4 + ω34 + 2
ω32 + 2 ω3 ω6

ω32 + 2 ω32 + 2 ω62 + ω34 + 2
ω32 + 2 ω4 + ω3 + ω7 + 3 ω7 + ω6 + ω47 + ω36 + 2
ω32 + 2 ωω3 ωω3

ω4 + ω3 + ω7 + 3 ω + 1 ω5 + ω4 + ω3 + ω7 + 3
ω4 + ω3 + ω7 + 3 ω + 2 ω5 + ω42 + ω3 + ω7 + 3
ω4 + ω3 + ω7 + 3 ω3 ω7

ω4 + ω3 + ω7 + 3 ω32 + 2 ω72 + ω42 + ω3 + ω7 + 3
ω4 + ω3 + ω7 + 3 ω4 + ω3 + ω7 + 3 ω8 + ω7 + ω57 + ω43 + ω3 + ω7 + 3
ω4 + ω3 + ω7 + 3 ωω3 ωω3

ωω3 ω + 1 ωω+1 + ωω3
ωω3 ω + 2 ωω+1 + ωω6
ωω3 ω3 ωω+3

ωω3 ω32 + 2 ωω+32 + ωω6
ωω3 ω4 + ω3 + ω7 + 3 ωω+4 + ωω+3 + ωω+17 + ωω9
ωω3 ωω3 ωω23

Table 6: Ordinal multiply examples
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Expression Cantor Normal Form C++ code

Ordinal four(4);

4ω
7+3 ω764 four∧((omega∧7)+3)

five∧
5ω

7+ω+3 ω8125 ((omega∧7)+omega+3)
(ω + 1)4 ω4 + ω3 + ω2 + ω + 1 (omega+1)∧4

ωω
2+ω+2 + ωω

2+ω+1+ ((omega∧2)+omega+3)∧
(ω2 + ω + 3)ω

2+ω+1 ωω
2+ω3 ((omega∧2)+omega+1)

ωω
2+ω+4 + ωω

2+ω+3+ ((omega∧2)+omega+3)∧
(ω2 + ω + 3)ω

2+ω+2 ωω
2+ω+23 + ωω

2+ω+1 + ωω
2+ω3 ((omega∧2)+omega+2)

Table 7: C++ Ordinal exponentiation examples

computed. If the exponent has a finite term, this product is multiplied by the base taken to
the power of this finite term. This product is the result.

If the base is infinite and the exponent is an integer, n, the base is multiplied by itself
n times. To do this efficiently, all powers of two less than n are computed. The product of
those powers of 2 necessary to generate the result is computed.

If both the base and exponent are infinite, then the infinite terms of the exponent are
scanned in decreasing sequence. Each is is used as an exponent applied to the most significant
term of the base. The sequence of exponentials is multiplied. If the exponent has a finite
term then the entire base, not just the leading term, is raised to this finite power using the
algorithm described above for a finite exponent and infinite base. That factor is then applied
to the previous product of powers.

To compute the above result requires a routine for taking the exponential of a single
infinite term of the Cantor normal form i. e. a CantorNormalElement (see Equation 1) by
another infinite single term. (When Ordinal subclasses are defined this is the only routine
that must be overridden.) The algorithm is to multiply the exponent of ω from the first
operand (the base) by the second operand, That product is used as the exponent of ω in the
term returned. Table 7 gives some examples with C++ code and some additional examples
are shown in Table 8.

5 The Veblen hierarchy

This section gives a brief overview of the Veblen hierarchy and the ∆ operator. See [15, 11, 6]
for a more a complete treatment. This is followed by the development of a computational
approach for constructing notations for these ordinals up to (but not including) the large
Veblen ordinal. We go further in Sections 8 and 9.

The Veblen hierarchy extends the recursive ordinals beyond ε0. A Veblen hierarchy can
be constructed from any strictly increasing continuous function24f , whose domain and range

24A continuous function, f , on the ordinals must map limits to limits. Thus for every infinite limit ordinal
y, f(y) = sup{f(v) : v < y}. A continuous strictly increasing function on the ordinals is called a normal
function.
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α β αβ

ω + 1 ω + 1 ωω+1 + ωω

ω + 1 ω + 2 ωω+2 + ωω+1 + ωω

ω + 1 ω3 ωω
3

ω + 1 ω32 + 2 ωω
32+2 + ωω

32+1 + ωω
32

ω + 1 ω4 + 3 ωω
4+3 + ωω

4+2 + ωω
4+1 + ωω

4

ω + 1 ωω3 ωω
ω3

ω + 2 ω + 1 ωω+1 + ωω2
ω + 2 ω + 2 ωω+2 + ωω+12 + ωω2

ω + 2 ω3 ωω
3

ω + 2 ω32 + 2 ωω
32+2 + ωω

32+12 + ωω
322

ω + 2 ω4 + 3 ωω
4+3 + ωω

4+22 + ωω
4+12 + ωω

4
2

ω + 2 ωω3 ωω
ω3

ω3 ω + 1 ωω+3

ω3 ω + 2 ωω+6

ω3 ω3 ωω
3

ω3 ω32 + 2 ωω
32+6

ω3 ω4 + 3 ωω
4+9

ω3 ωω3 ωω
ω3

ω32 + 2 ω + 1 ωω+32 + ωω2
ω32 + 2 ω + 2 ωω+62 + ωω+34 + ωω2

ω32 + 2 ω3 ωω
3

ω32 + 2 ω32 + 2 ωω
32+62 + ωω

32+34 + ωω
322

ω32 + 2 ω4 + 3 ωω
4+92 + ωω

4+64 + ωω
4+34 + ωω

4
2

ω32 + 2 ωω3 ωω
ω3

ω4 + 3 ω + 1 ωω+4 + ωω3
ω4 + 3 ω + 2 ωω+8 + ωω+43 + ωω3

ω4 + 3 ω3 ωω
3

ω4 + 3 ω32 + 2 ωω
32+8 + ωω

32+43 + ωω
323

ω4 + 3 ω4 + 3 ωω
4+12 + ωω

4+83 + ωω
4+43 + ωω

4
3

ω4 + 3 ωω3 ωω
ω3

ωω3 ω + 1 ωω
2+ω3

ωω3 ω + 2 ωω
2+ω23

ωω3 ω3 ωω
4

ωω3 ω32 + 2 ωω
42+ω23

ωω3 ω4 + 3 ωω
5+ω33

ωω3 ωω3 ωω
ω3

Table 8: Ordinal exponential examples
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are the countable ordinals such that f(0) > 0. f(x) = ωx satisfies these conditions and is
the starting point for constructing the standard Veblen hierarchy. One core idea is to define
a new function from an existing one so that the new function enumerates the fixed points of
the first one. A fixed point of f is a value v such that f(v) = v. Given an infinite sequence
of such functions one can define a new function that enumerates the common fixed points of
all functions in the sequence. In this way one can iterate the construction of a new function
up to any countable ordinal. The Veblen hierarchy based on f(x) = ωx is written as ϕ(α, β)
and defined as follows.

ϕ(0, β) = ωβ.
ϕ(α + 1, β) enumerates the fixed points of ϕ(α, β).
ϕ(α, β) for α a limit ordinal, α, enumerates the intersection of the fixed points of ϕ(γ, β)

for γ less than α.

From a full Veblen hierarchy one can define a diagonalization function ϕ(x, 0) from which
a new Veblen hierarchy can be constructed. This can be iterated and the ∆ operator does
this in a powerful way.

5.1 The delta operator

The ∆ operator is defined as follows[11, 6].

• ∆0(ψ) enumerates the fixed points of the normal (continuous and strictly increasing)
function on the ordinals ψ.

• ∆α′(ϕ) = ∆0(ϕα(−, 0)). That is it enumerates the fixed points of the diagonalization
of the Veblen hierarchy constructed from ϕα.

• ∆α(ϕ) for α a limit ordinal enumerates
⋂
γ<α range ∆γ(ϕ).

• ϕα0 = ϕ.

• ϕαβ′ = ∆α(ϕαβ).

• ϕαβ for β a limit ordinal enumerates
⋂
γ<β range ϕαγ .

The function that enumerates the fixed points of a base function is a function on functions.
The Veblen hierarchy is constructed by iterating this function on functions starting with
ωx. A generalized Veblen hierarchy is constructed by a similar iteration starting with any
function on the countable ordinals, f(x), that is strictly increasing and continuous (see Note
24) with f(0) > 0. The ∆ operator defines a higher level function. Starting with the
function on functions used to define a general Veblen hierarchy, it defines a hierarchy of
functions on functions. The ∆ operator constructs a higher level function that builds and
then diagonalizing a Veblen hierarchy.

In a computational approach, such functions can only be partially defined on objects in
an always expandable computational framework. The classes in which the functions are
defined and the functions themselves are designed to be extensible as future subclasses are
added to the system.
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5.2 A finite function hierarchy

An obvious extension called the Veblen function is to iterate the functional hierarchy any
finite number of times. This can be represented as a function on ordinal notations,

ϕ(α1, α2, ..., αn). (4)

Each of the parameters is an ordinal notation and the function evaluates to an ordinal
notation. The first parameter is the most significant. It represents the iteration of the highest
level function. Each successive ordinal25 operand specifies the level of iteration of the next
lowest level function. With a single parameter Equation 4 is the function ωx (ϕ(α) = ωα).
With two parameters, ϕ(α, β), it is the Veblen hierarchy constructed from the base function
ωx. With three parameters we have the ∆ hierarchy built on this initial Veblen hierarchy.
In particular the following holds.

ϕ(α, β, x) = ∆αϕ
α
β(x) (5)

5.3 The finite function normal form

The Veblen function and its extension to a function with an arbitrary finite number of
parameters requires the following extension to the Cantor Normal Form in Equation 1.

α = α1n1 + α2n2 + α3n3 + ...+ αknk (6)

αi = ϕ(β1,i, β2,i, ..., βmi,i)

k ≥ 1, k ≥ i ≥ 1,mi ≥ 1, nk ≥ 1, α1 > α2 > α3 > ... > αk

αi and βi,j are ordinals; i, j, k,mi, nk are integers.

Note that ϕ(β) = ωβ so the above includes the Cantor normal form terms. To obtain
a unique representation for each ordinal the rule is adopted that all normal forms must be
reduced to the simplest expression that represents the same ordinal. For example ϕ(1, 0) =
ε0 = ωε0 = ϕ(ϕ(1, 0)). This requires that fixed points be detected and reduced as described
in 6.3.

In this computational approach, the meaning of ordinal notations is defined by functions
compare and limitElement. What compare does is determined by limitElement which
defines each notation in terms of notations for smaller ordinals.

25 All references to ordinals in the context of describing the computational approach refer to ordinal
notations. The word notation will sometimes be omitted when it is obviously meant and would be tedious
to keep repeating.

20



α = ϕ(β1, β2, ..., βm) from Equation 6.

lp1, rep1 and rep2 abbreviate limPlus 1 replace1 and replace2.

Conditions on the least Routines rep1 and rep2 replace 1 or 2
significant non zero parameters in Equation 6. The index and value
parameters, leastOrd to replace (one or two instances) are the parameters
(index least) and to these routines. lp1() adds one to an ordinal with
nxtOrd (index nxt) psuedoCodeLevel > cantorCodeLevel (see

Section 6.3 on fixed points). ret is the result returned.

X nxtOrd leastOrd ret=α.limitElement(i)

A ignore limit1 ret=rep1(least,leastOrd.limitElement(i).lp1());
B ignore successor2 ret=rep2(least,leastOrd-1,least+1,1);

for (int j=1; j<i; j++)

ret= rep2(least,leastOrd-1,least+1,ret.lp1());

C limit successor3 tmp=rep1(least,leastOrd-1).lp1();

ret=rep2(nxt,nxtOrd.limitElement(i).lp1(),

nxt+1,tmp);

D successor successor3 ret=rep1(least,leastOrd-1).lp1();

for (int j=1; j<i; j++)

ret=rep2(nxt, nxtOrd-1, nxt+1,ret.lp1());

The ‘X’ column gives the exit code from limitElement (see Section 6.2).
1 least significant non zero parameter may or may not be least significant.
2 least significant non zero parameter is not least significant.
3 least significant non zero parameter is least significant.

Table 9: Cases for computing ϕ(β1, β2, ..., βm).limitElement(i)

5.4 limitElement for finite functions

The LimitElement member function for an ordinal notation ord defines ord by enumerating
notations for smaller ordinals such that the union of the ordinals those notations represent is
the ordinal represented by ord. As with base class Ordinal all but the least significant term
is copied unchanged to each output of limitElement. Table 2 for Ordinal::limitElement
specifies how terms, excluding the least significant and the factors (the ni in Equation 1),
are handled. This does not change for the extended normal form in Equation 6. Table 9
extends Table 2 by specifying how the least significant normal form term (if it is ≥ ε0) is
handled in constructing limitElement(i). If the factor of this term is greater than 1 or
there are other terms in the ordinal notation then the algorithms from Table 2 must also be
used in computing the final output. The idea in defining how limitElement works on the
least significant term is to construct an infinite sequence that is the the strongest possible
iteration of allowed processes and notations.

Table 9 uses pseudo C++ code adapted from the implementation of limitElement. Vari-
able names have been shortened to limit the size of the table and other simplifications have
been made. However the code accurately describes the logic of the program. Variable ret is
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the result or output of the subroutine. Different sequences are generated based on the two
least significant non zero parameters of ϕ in Equation 4 and whether the least significant
non zero term is the least significant term (including those that are zero). The idea is to
construct an infinite sequence with a limit that is not reachable with a finite sequence of
smaller notations.

5.5 An iterative functional hierarchy

A finite functional hierarchy with an arbitrarily large number of parameters can be expanded
with a limit that is a sequence of finite functionals with an ever increasing number of param-
eters. Using this as the successor operation and taking the union of all hierarchies defined
by a limit ordinal allows iteration of a functional hierarchy up to any recursive ordinal. The
key to defining this iteration is the limitElement member function.

To support this expanded notation the normal form in Equation 6 is expanded as follows.

α = α1n1 + α2n2 + α3n3 + ...+ αknk

αi = ϕγi(β1,i, β2,i, ..., βmi,i) (7)

k ≥ 1, k ≥ i ≥ 1,mi ≥ 1, nk ≥ 1, α1 > α2 > α3 > ... > αk

αi and βi,j are ordinals; i, j, k,mi, nk are integers.

γi, the subscript to ϕ, is the ordinal the functional hierarchy is iterated up to. ϕ0(β1, β2, ..., βm)
= ϕ(β1, β2, ..., βn). ϕ1(0) = ϕ1 is the notation for an infinite union of the ordinals repre-
sented by finite functionals. Specifically it represents the union of ordinals with notations:
ϕ(1), ϕ(1, 0).ϕ(1, 0, 0), ...,. ϕ(1) = ω, ϕ(1, 0) = ε0 and ϕ(1, 0, 0) = Γ0. ϕ0(α) = ϕ(α) = ωα

and ϕγ+1 = ϕγ(1) ∪ ϕγ(1, 0) ∪ ϕγ(1, 0, 0), ...,.
The definition of limitElement for this hierarchy is shown in Table 10. This is an

extension of Table 9. That table and the definition of compare (See Section 7.1) define
the notations represented by Equation 7. The subclass FiniteFuncOrdinal (Section 6)
defines finite functional notations for recursive ordinals. The subclass IterFuncOrdinal

(Section 7) defines iterative functional notations for recursive ordinals.

6 FiniteFuncOrdinal class

FiniteFuncOrdinal class is derived from Ordinal base class. It implements ordinal
notations for the normal form in Equation 6. Each term or αini is defined by an in-
stance of class FiniteFuncNormalElement or CantorNormalElement. Any term that is
a FiniteFuncNormalElement will have codeLevel set to finiteFuncCodeLevel.

The FiniteFuncOrdinal class should not be used directly to create ordinal notations.
Instead use functions psi or finiteFunctional26. psi constructs notations for the ini-
tial Veblen hierarchy. It requires exactly two parameters (for the single parameter case
use ϕ(α) = ωα). finiteFunctional accepts 3 to 5 parameters. For more than 5 use a

26In the interactive ordinal calculator the psi function can be use with any number of parameters to define
a FiniteFuncOrdinal. See Section A.11.5 for some examples.

22



α = ϕγ(β1, β2, ..., βm) from Equation 7. For this table m = 1.

X Condition α.limitElement(i)

E β1 = 0, γ limit ϕγlimitElement(i).lp1()(0)
F β1 = 0, γ successor ϕγ−1(ϕγ−1(0), 0, 0, ..., 0) (i parameters)
G β1 limit ϕγ(β1.limitElement(i).lp1())
H β1 successor ϕγ.limitElement(i).lp1()(ϕγ(β1 − 1).lp1(), 0, 0, ..., 0)

γ limit (i parameters)
I β1 successor ϕγ−1(ϕγ(β1 − 1).lp1(), 0, 0, ..., 0)

γ successor (i parameters)
J m > 1 See Table 9 for more than one βi parameter.

The ‘X column gives the exit code from limitElement (see Section 6.2).
If β1 = 0, it is the only βi. Leading zeros are normalized away.

Table 10: Cases for computing ϕγ(β1, β2, ..., βm).limitElement(i)

NULL terminated array of pointers to Ordinals or createParameters to create this array.
createParameters can have 1 to 9 parameters all of which must be pointers to Ordinals.

Some examples are show in Table 11. The direct use of the FiniteFuncOrdinal construc-
tor is shown in Table 12. The ‘Ordinal’ column of both tables is created using Ordinal::

texNormalForm which uses the standard notation for εα and Γα where appropriate. These
functions reduce fixed points to their simplest expression and declare an Ordinal instead of
a FiniteFuncOrdinal if appropriate. The first line of Table 11 is an example of this.

FiniteFuncOrdinal can be called with 3 or 4 parameters. For additional parame-
ters, it can be called with a NULL terminated array of pointers to Ordinal notations.
createParameters can be used to create this array as shown in the last line of Table 1127.

6.1 FiniteFuncNormalElement::compare member function

Because of virtual functions, there is no need for FiniteFuncOrdinal::compare. The work
of comparing the sequence of terms in Equation 6 is done by Ordinal::compare and routines
it calls. FiniteFuncNormalElement::compare is automatically called for comparing individ-
ual terms in the normal form from Equation 6. It overrides CantorNormalElement::compare.
It outputs 1, 0 or -1 if the object it is called from is greater than equal to or less than its argu-
ment term. The βj,i in Equation 6 are represented by the elements of array funcParameters

in C++.
The FiniteFuncNormalElement object compare (or any class member function) is

called from is ‘this’ in C++. The CantorNormalElement argument to compare is trm.
If trm.codeLevel > finiteFuncCodeLevel28 then -trm.compare(*this) is returned. This
invokes the subclass member function associated with the subclass and codeLevel of trm.

CantorNormalElement::compare only needs to test the exponents and if those are equal
the factors of the two normal form terms being compared. An arbitrarily large number

27The ‘&’ character in the last line in Table 11 is the C++ syntax that constructs a pointer to the object
‘&’ precedes.

28 finiteFuncCodeLevel is the codeLevel(see Section 4.4.2) of a FiniteFuncNormalElement.
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C++ code Ordinal
psi(zero,omega) ωω

psi(one,zero) ε0

psi(one,one) ε1

psi(eps0,one) ϕ(ε0, 1)
psi(one,Ordinal::two) ε2

finiteFunctional(one,zero,zero) Γ0

finiteFunctional(one,zero,one) ϕ(1, 0, 1)
finiteFunctional(one,zero,Ordinal::two) ϕ(1, 0, 2)
finiteFunctional(one,Ordinal::two,zero) Γ2

finiteFunctional(one,zero,omega) ϕ(1, 0, ω)
finiteFunctional(one,eps0,omega) ϕ(1, ε0, ω)
finiteFunctional(one,zero,zero,zero) ϕ(1, 0, 0, 0)
finiteFunctional(createParameters(

&one,&zero,&zero,&zero,&zero)) ϕ(1, 0, 0, 0, 0)

Table 11: finiteFunctional C++ code examples

C++ code Ordinal
const Ordinal * const params[] =

{&Ordinal::one,&Ordinal::zero,0};
const FiniteFuncOrdinal eps0(params); ε0

Ordinal eps0 alt = psi(1,0); ε0

const FiniteFuncOrdinal eps0 alt2(1,0); ε0

const FiniteFuncOrdinal gamma0(1,0,0); Γ0

const FiniteFuncOrdinal gammaOmega(omega,0,0); ϕ(ω, 0, 0)
const FiniteFuncOrdinal gammax(gammaOmega,gamma0,omega); ϕ(ϕ(ω, 0, 0),Γ0, ω)
const FiniteFuncOrdinal big(1,0.0,0); ϕ(1, 0, 0, 0)

Table 12: FiniteFuncOrdinal C++ code examples
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of Ordinal parameters are used to construct a FiniteFuncNormalElement. Thus a se-
ries of tests is required. This is facilitated by a member function CantorNormalElement::

getMaxParameter that returns the largest parameter used in constructing this normal form
term29. If trm.codeLevel < finiteFuncCodeLevel then trm > this only if the maximum
parameter of trm is greater than this. However the value of factor for this must be ig-
nored in making this comparison because trm ≥ ωtrm.getMaxParameter() and this will swamp the
effect of any finite factor.

The following describes FiniteFuncNormalElement::compare with a single
CantorNormalElement parameter trm.

1. If trm.codeLevel < finiteFuncCodeLevel the first (and thus largest) term of the
exponent of the argument is compared to this, ignoring the two factors. If the result
is nonzero that result is returned. Otherwise -1 is returned.

2. If the first term of the maximum parameter of the ordinal notation compare is called
from is, ignoring factors, ≥ trm, return 1.

3. If this ≤ the maximum parameter of trm return -1.

If the above is not decisive FiniteFuncNormalElement::compareFiniteParams is called
to compare in sequence the number of parameters and then the size of each parameter in
succession starting with the most significant. If any difference is encountered that is returned
as the result otherwise the result depends on the relative size of the two factors.

6.2 FiniteFuncNormalElement::limitElement member function

As with compare there is no need for FiniteFuncOrdinal::limitElement. The Ordinal

member function is adequate. FiniteFuncNormalElement::limitElement overrides
CantorNormalElement::limitElement described in Section 4.3. Thus it takes a single inte-
ger parameter. Increasing values for this argument yield larger ordinal notations as output.
The union of the ordinals represented by the outputs for all integer inputs is equal to the or-
dinal represented by the FiniteFuncNormalElement class instance limitElement is called
from. This will be referred to as the input term to limitElement.

Ordinal::limitElement copies all but the last term of the normal form of its input to
the output it generates. For both Ordinals and FiniteFuncOrdinals this is actually done
in OrdinalImpl::limitElement30 The last term of the result is determined by a number of
conditions on the last term of the input in FiniteFuncNormalElement::limitElement.

Tables 2 and 9 fully define FiniteFuncOrdinal::limitElement. The ’X’ column in Ta-
ble 9 connect each table entry to the section of code preceding RETURN1. This is a debugging
macro which has a quoted letter as a parameter. This letter is an exit code that matches
the X column in Table 9. The C++ pseudo code in the table uses shorter variable names and
takes other shortcuts, but accurately reflects the logic in the source code.

Some examples are shown in Table 13.

29For efficiency the constructor of a FiniteFuncNormalElement finds and saves the maximum parameter.
For a CantorNormalElement the maximum parameter is the exponent as this is the only parameter that
can be infinite. The case when the factor is larger than the exponent can be safely ignored.

30OrdinalImpl is an internal implementation class that does most of the work for instances of an Ordinal.
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6.3 FiniteFuncOrdinal::fixedPoint member function

FiniteFuncOrdinal::fixedPoint is used by finiteFunctional to create an instance of
FiniteFuncOrdinal in a normal form (Equation 6) that is the simplest expression for the
ordinal represented. The routine has an index and an array of pointers to Ordinal no-
tations as input. This array of notations contains the parameters for the notation being
constructed. This function determines if the parameter at the specified index is a fixed point
for a FiniteFuncOrdinal created with these parameters. If it is, true is returned and oth-
erwise false. The routine that calls this routine selects the largest parameter in the array
of Ordinal pointers as the one to check (the value of the index parameter). It then checks
to see if all less significant parameters are 0. If not this cannot be a fixed point. fixedPoint
is only called if this condition is met.

Section 4.4.1 defines the codeLevel assigned to a CantorNormalElement. From this a
psuedoCodeLevel for an Ordinal is obtained by calling Ordinal member function with that
name. psuedoCodeLevel returns cantorCodeLevel unless the ordinal notation normal form
has a single term or CantorNormalElement with a factor of 1. In that case the codeLevel

of that term is returned. This is helpful in evaluating fixed points because a parameter with
a psuedoCodeLevel at cantorCodeLevel cannot be a fixed point.

If the parameter selected has psuedoCodeLevel ≤ cantorCodeLevel, false is returned.
If the maximum parameter psuedoCodeLevel > finiteFuncCodeLevel, true is returned.
Otherwise a FiniteFuncOrdinal is constructed from all the parameters except that selected
by the index which is set to zero31. If this value is less than the maximum parameter, true
is returned and otherwise false.

6.4 FiniteFuncOrdinal operators

FiniteFuncOrdinal operators are extensions of the Ordinal operators defined in Section 4.4.
No new code is required for addition.

6.4.1 FiniteFuncOrdinal multiplication

The code that combines the terms of a product for class Ordinal can be used without change
for FiniteFuncOrdinal. The only routines that need to be overridden are those that take the
product of two terms, i. e. two CantorNormalElements with at least one of these also being
a FiniteFuncNormalElement. The two routines overridden are multiply and multiplyBy.
Overriding these insures that, if either operand is a FiniteFuncNormalElement subclass of
CantorNormalElement, the higher level virtual function will be called.

The key to multiplying two terms of the normal form representation, at least one of
which is at finiteFuncCodeLevel, is the observation that every normal form term at
finiteFuncCodeLevel with a factor of 1 is a fixed point of ωx, i. e. a = ωa. Thus
the product of two such terms, a and b is ωa+b. Further the product of term a at this level
and b = ωβ for any term b at cantorCodeLevel is ωa+β. Note in all cases if the first term

31If there is only one nonzero parameter (which must be the most significant), then the parameter array is
increased by 1 and the most significant parameter is set to one in the value to compare with the maximum
parameter.
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has a factor other than 1 it will be ignored. The second term’s factor will be applied to
the result.

Multiply is mostly implemented in FiniteFuncNormalElement::doMultiply which is a
static function32 that takes both multiply arguments as operands. This routine is called
by both multiply and multiplyBy. It first checks to insure that neither argument exceeds
finiteFuncCodeLevel and that at least one argument is at finiteFuncCodeLevel. The
two arguments are called op1 and op2.

Following are the steps taken in FiniteFuncNormalElement::doMultiply. s1 and s2

are temporary variables.

1. If op1 is finite return a copy of op2 with its factor multiplied by op1 and return that
value.

2. If op1 is at cantorCodeLevel assign to s1 the exponent of op1 otherwise assign to s1

a copy of op1 with factor set to 1.

3. If op2 is at cantorCodeLevel assign to s2 the exponent of op2 otherwise assign to s2

a copy of op2 with factor set to 1.

4. Add s1 and s2 to create newExp.

5. If newExp has a single term and the codeLevel of that term is ≥
finiteFuncCodeLevel and the factor of that term is 1 then return the value of the
single term of newExp.

6. Create and return a CantorNormalElement with exponent equal to newExp and factor

equal to the factor or op2.

Some examples are shown in Table 14.

32A C++ static function is a member function of a class that is not associated with a particular instance
of that class.
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6.4.2 FiniteFuncOrdinal exponentiation

Exponentiation has a structure similar to multiplication. The only routines that need to be
overridden involve ab when both a and b are single terms in a normal form expansion. The
routines overridden are toPower and powerOf. Most of the work is done by static mem-
ber function FiniteFuncNormalElement::doToPower which takes both parameters as argu-
ments. The two routines that call this only check if both operands are at cantorCodeLevel
and if so call the corresponding CantorNormalElement member function.

The key to the algorithm is again the observation that every normal form term at
finiteFuncCodeLevel with a factor of 1 is a fixed point of ωx, i. e. a = ωa. The value of
factor can be ignored in the base part of an exponential expression where the exponent is
a limit ordinal. All infinite normal form terms are limit ordinals. Thus ab where both a and
b are at finiteFuncCodeLevel and b ≤ a is ωab or equivalently ωω

a+b
which is the normal

form result. If the base, a, of the exponential is at cantorCodeLevel then a = ωα and the
result is ωαb.

Following is a more detailed summary of FiniteFuncNormalElement::doToPower. This
summary describes how baseexpon is computed.

• If (base < expon) ∧ (expon.factor = 1) ∧ (expon.expTerm()33 == true) then expon

is returned.

• p1 = base.codeLevel ≥ finiteFuncCodeLevel ?base : base.exponent34

• newExp = p1 × expon

• If newExp has a single term with a factor of 1 and the codeLevel of that term is ≥
finiteFuncCodeLevel then return newExp because it is a fixed point of ωx.

• Otherwise return ωnewExp.

33CantorNormalElement::expTerm returns true iff the term it is called from is at cantorCodeLevel, has
a factor or 1, has an exponent with a single term and such that exponent.expTerm() returns true.

34In C++ ‘boolean expression ? optionTrue : optionFalse’ evaluates to ‘optionTrue’ if ‘boolean expression’
is true and ‘optionFalse’ otherwise
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‘cp’ stands for function createParameters

C++ code Ordinal
iterativeFunctional(zero,cp(&one)) ω
iterativeFunctional(zero,cp(&one,&zero)) ε0

iterativeFunctional(zero,cp(&one,&one,&zero)) Γ1

iterativeFunctional(one) ϕ1

iterativeFunctional(one,cp(&one)) ϕ1(1)
iterativeFunctional(one,cp(&one,&omega)) ϕ1(1, ω)
iterativeFunctional(one,cp(&one,&omega,&zero,&zero)) ϕ1(1, ω, 0, 0)
iterativeFunctional(omega,cp(&one,&omega,&zero,&zero)) ϕω(1, ω, 0, 0)
iterativeFunctional(omega) ϕω
iterativeFunctional(one,cp(&iterativeFunctional(omega))) ϕω

Table 16: iterativeFunctional C++ code examples

7 IterFuncOrdinal class

C++ class IterFuncOrdinal is derived from class FiniteFuncOrdinal which in turn is
derived from class Ordinal. It implements the iterative functional hierarchy described in
Section 5.5. It uses the normal form in Equation 7. Each term of that normal form, each
αini, is represented by an instance of class IterFuncNormalElement or one of the classes
this class is derived from. These are FiniteFuncNormalElement and CantorNormalElement.
Terms that are IterFuncNormalElements have a codeLevel of iterFuncCodeLevel.

The IterFuncOrdinal class should not be used directly to create ordinal notations.
Instead use function iterativeFunctional35. This function takes two arguments. The
first gives the level of iteration or the value of γi in Equation 7. The second gives a NULL

terminated array of pointers to Ordinals which are the βi,j in Equation 7. This second
parameter is optional and can be created with function createParameters described in
Section 6. Some examples are shown in Table 16.

iterativeFunctional creates an Ordinal or FiniteFuncOrdinal instead of an
IterFuncOrdinal if appropriate. The first three lines of Table 16 are examples. It also
reduces fixed points to their simplest possible expression. The last line of the table is an
example.

7.1 IterFuncNormalElement::compare member function

IterFuncNormalElement::compare supports one term in the extended normal form in Equa-
tion 7. IterFuncNormalElement::compare with a single CantorNormalElement argument
overrides FiniteFuncNormalElement::compare with the same argument (see Section 6.1).
It outputs 1, 0 or -1 if the object it is called from is greater than equal to or less than its
argument term.

35The interactive ordinal calculator supports a TeX like syntax. To define ϕa(b, c, d) write psi {a}(b,c,d).
Any number of parameters in parenthesis may be entered or the parenthesis may be omitted. See Sec-
tion A.11.6 for examples.
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The IterFuncNormalElement object compare (or any class member function) is called
from is this in C++. The CantorNormalElement argument to compare is trm. If trm.codeLevel
> iterFuncCodeLevel then -trm.compare(*this) is returned. This invokes the subclass
member function associated with the codeLevel of trm.

This compare is similar to that for class FiniteFuncOrdinal described in Section 6.1.
The main difference is additional tests on γi from Equation 7.

If trm.codeLevel < iterFuncCodeLevel then trm > this only if the maximum param-
eter of trm is greater than this. However the values of factor must be ignored in making
this comparison because trm ≥ ωtrm.getMaxParameter() and this will swamp the effect of any finite
factor.

Following is an outline of IterFuncNormalElement::compare with a CantorNormalElement
parameter trm.

1. If trm.codeLevel < iterFuncCodeLevel, this is compared with the first (largest)
term of the maximum parameter of the argument (ignoring the two factors). If the
result is ≤ 0, -1 is returned. Otherwise 1 is returned.

2. this is compared to the maximum parameter of the argument. If the result is less
than than or equal -1 is returned.

3. The maximum parameter of this is compared against the argument trm. If the result
is greater or equal 1 is returned.

4. The function level (functionLevel) (γi from Equation 7) of this is compared to the
functionLevel of trm. If the result is nonzero it is returned.

If no result is obtained IterFuncNormalElement::compareFiniteParams is called to
compare in sequence the number of parameters of the two terms and then the size of each
argument in succession starting with the most significant. If any difference is encountered
that is returned as the result. If not the difference in the factors of the two terms is
returned.

7.2 IterFuncNormalElement::limitElement member function

IterFuncNormalElement::limitElement overrides CantorNormalElement::limitElement
described in Section 4.3 and FiniteFuncNormalElement::limitElement described in Sec-
tion 6.2 This function takes a single integer parameter. Increasing values for this argument
yield larger ordinal notations as output. The union of the ordinals represented by the out-
puts for all integer inputs is equal to the ordinal represented by the IterFuncNormalElement
class instance limitElement is called from. This will be referred to as the input to
limitElement.

Ordinal::limitElement processes all but the last term of the normal form of the result
by copying it unchanged from the input Ordinal. The last term of the result is determined by
a number of conditions on the last term of the input. This is what IterFuncNormalElement::
limitElement does.
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Tables 2, 9 and 10 fully define IterFuncOrdinal::limitElement.36 The C++ pseudo
code in the table uses shorter variable names and takes other shortcuts, but accurately
reflects the logic in the source code. The IterFuncNormalElement version of this rou-
tine calls a portion of the FiniteFuncNormalElement version called limitElementCom.
FiniteFuncNormalElement::limitElementCom always creates its return value with a virtual
function createVirtualOrdImpl which is overrides when it is called from a subclass object.
The rep1 and rep237 of tables 9 and 10 also always call this virtual function to create a
result.

Some examples are shown in Table 17.

36The ’X’ column in Tables 9 and 10 connect each table entry to the section of code preceding RETURN1.
This is a debugging macro which has a quoted string as a parameter. This string is an exit code that matches
the X column in the tables. If debugging mode is enabled for compare these exit codes are displayed.

37The name of these functions in the C++ source are replace1 and replace2.
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7.3 IterFuncOrdinal::fixedPoint member function

IterFuncOrdinal::fixedPoint is used by iterativeFunctional to create an instance of
an IterFuncOrdinal in a normal form (Equation 7) that is the simplest expression for the
ordinal represented. The routine has the following parameters for a single term in Equation 7.

• The function level, γ.

• An index specifying the largest parameter of the ordinal notation being constructed.
If the largest parameter is the function level the index has the value iterMaxParam

defined as −1 in an enum.

• The function parameters as an array of pointers to Ordinals. These are the βj in a
normal form term.

in Equation 7.

This function determines if the parameter at the specified index is a fixed point for
an IterFuncOrdinal created with the specified parameters. If it is, true is returned and
otherwise false. The routine that calls this routine selects the largest parameter from the
function level (γ) and the array of Ordinal pointers (βj) as the one to check and indicates
this in the index parameter, The calling routine checks to see if all less significant parameters
are 0. If not this cannot be a fixed point. Thus fixedPoint is called only if this condition
is met.

Section 6.3 describes psuedoCodeLevel. If the psuedoCodeLevel of the selected param-
eter is less than or equal cantorCodeLevel, false is returned. If that level is greater than
iterFuncCodeLevel, true is returned. The most significant parameter, the function level,
cannot be a fixed point unless it has a psuedoCodeLevel > iterFuncCodeLevel. Thus,
if the index selects the the function level, and the previous test was not passed false is
returned. Finally an IterFuncOrdinal is constructed from all the parameters except that
selected by the index. If this value is less than the selected parameter, true is returned and
otherwise false.

7.4 IterFuncOrdinal operators

The multiply and exponential routines for FiniteFuncOrdinal and Ordinal and the classes
for normal form terms CantorNormalElement and FiniteFuncNormalElement do not have
functions that need to be overridden to support IterFuncOrdinal multiplication and expo-
nentiation. The exceptions are utilities such as that used to create a copy of normal form
term IterFuncNormalElement with a new value for factor.

Some multiply examples are shown in Table 18. Some exponential examples are shown
in Table 19.
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α β α× β
ϕ1 ϕ1 ω(ϕ12)

ϕ1 ϕ3 ϕ3

ϕ1 ϕ3(1, 0, 0) ϕ3(1, 0, 0)
ϕ1 ϕ1(ω, 1) ϕ1(ω, 1)
ϕ1 ϕ1(ω, 1, 0) + ϕ1 ϕ1(ω, 1, 0) + ω(ϕ12)

ϕ1 ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ϕε0 + ϕ1(ω, 1, 0) + ω(ϕ12)

ϕ3 ϕ1 ωϕ3+ϕ1

ϕ3 ϕ3 ω(ϕ32)

ϕ3 ϕ3(1, 0, 0) ϕ3(1, 0, 0)
ϕ3 ϕ1(ω, 1) ωϕ3+ϕ1(ω,1)

ϕ3 ϕ1(ω, 1, 0) + ϕ1 ωϕ3+ϕ1(ω,1,0) + ωϕ3+ϕ1

ϕ3 ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ϕε0 + ωϕ3+ϕ1(ω,1,0) + ωϕ3+ϕ1

ϕ3(1, 0, 0) ϕ1 ωϕ3(1,0,0)+ϕ1

ϕ3(1, 0, 0) ϕ3 ωϕ3(1,0,0)+ϕ3

ϕ3(1, 0, 0) ϕ3(1, 0, 0) ω(ϕ3(1,0,0)2)

ϕ3(1, 0, 0) ϕ1(ω, 1) ωϕ3(1,0,0)+ϕ1(ω,1)

ϕ3(1, 0, 0) ϕ1(ω, 1, 0) + ϕ1 ωϕ3(1,0,0)+ϕ1(ω,1,0) + ωϕ3(1,0,0)+ϕ1

ϕ3(1, 0, 0) ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ϕε0 + ωϕ3(1,0,0)+ϕ1(ω,1,0) + ωϕ3(1,0,0)+ϕ1

ϕ1(ω, 1) ϕ1 ωϕ1(ω,1)+ϕ1

ϕ1(ω, 1) ϕ3 ϕ3

ϕ1(ω, 1) ϕ3(1, 0, 0) ϕ3(1, 0, 0)
ϕ1(ω, 1) ϕ1(ω, 1) ω(ϕ1(ω,1)2)

ϕ1(ω, 1) ϕ1(ω, 1, 0) + ϕ1 ϕ1(ω, 1, 0) + ωϕ1(ω,1)+ϕ1

ϕ1(ω, 1) ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ϕε0 + ϕ1(ω, 1, 0) + ωϕ1(ω,1)+ϕ1

ϕ1(ω, 1, 0) + ϕ1 ϕ1 ωϕ1(ω,1,0)+ϕ1

ϕ1(ω, 1, 0) + ϕ1 ϕ3 ϕ3

ϕ1(ω, 1, 0) + ϕ1 ϕ3(1, 0, 0) ϕ3(1, 0, 0)
ϕ1(ω, 1, 0) + ϕ1 ϕ1(ω, 1) ωϕ1(ω,1,0)+ϕ1(ω,1)

ϕ1(ω, 1, 0) + ϕ1 ϕ1(ω, 1, 0) + ϕ1 ω(ϕ1(ω,1,0)2) + ωϕ1(ω,1,0)+ϕ1

ϕ1(ω, 1, 0) + ϕ1 ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ϕε0 + ω(ϕ1(ω,1,0)2) + ωϕ1(ω,1,0)+ϕ1

ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ϕ1 ωϕε0+ϕ1

ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ϕ3 ωϕε0+ϕ3

ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ϕ3(1, 0, 0) ωϕε0+ϕ3(1,0,0)

ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ϕ1(ω, 1) ωϕε0+ϕ1(ω,1)

ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ϕ1(ω, 1, 0) + ϕ1 ωϕε0+ϕ1(ω,1,0) + ωϕε0+ϕ1

ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ω(ϕε02) + ωϕε0+ϕ1(ω,1,0) + ωϕε0+ϕ1

Table 18: IterFuncOrdinal multiply examples
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α β αβ

ϕ1 ϕ1 ωω
(ϕ12)

ϕ1 ϕ3 ϕ3

ϕ1 ϕ3(1, 0, 0) ϕ3(1, 0, 0)
ϕ1 ϕ1(ω, 1) ϕ1(ω, 1)

ϕ1 ϕ1(ω, 1, 0) + ϕ1 ωϕ1(ω,1,0)+ω(ϕ12)

ϕ1 ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ωϕε0+ϕ1(ω,1,0)+ω(ϕ12)

ϕ3 ϕ1 ωω
ϕ3+ϕ1

ϕ3 ϕ3 ωω
(ϕ32)

ϕ3 ϕ3(1, 0, 0) ϕ3(1, 0, 0)

ϕ3 ϕ1(ω, 1) ωω
ϕ3+ϕ1(ω,1)

ϕ3 ϕ1(ω, 1, 0) + ϕ1 ωω
ϕ3+ϕ1(ω,1,0)+ωϕ3+ϕ1

ϕ3 ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ωϕε0+ωϕ3+ϕ1(ω,1,0)+ωϕ3+ϕ1

ϕ3(1, 0, 0) ϕ1 ωω
ϕ3(1,0,0)+ϕ1

ϕ3(1, 0, 0) ϕ3 ωω
ϕ3(1,0,0)+ϕ3

ϕ3(1, 0, 0) ϕ3(1, 0, 0) ωω
(ϕ3(1,0,0)2)

ϕ3(1, 0, 0) ϕ1(ω, 1) ωω
ϕ3(1,0,0)+ϕ1(ω,1)

ϕ3(1, 0, 0) ϕ1(ω, 1, 0) + ϕ1 ωω
ϕ3(1,0,0)+ϕ1(ω,1,0)+ωϕ3(1,0,0)+ϕ1

ϕ3(1, 0, 0) ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ωϕε0+ωϕ3(1,0,0)+ϕ1(ω,1,0)+ωϕ3(1,0,0)+ϕ1

ϕ1(ω, 1) ϕ1 ωω
ϕ1(ω,1)+ϕ1

ϕ1(ω, 1) ϕ3 ϕ3

ϕ1(ω, 1) ϕ3(1, 0, 0) ϕ3(1, 0, 0)

ϕ1(ω, 1) ϕ1(ω, 1) ωω
(ϕ1(ω,1)2)

ϕ1(ω, 1) ϕ1(ω, 1, 0) + ϕ1 ωϕ1(ω,1,0)+ωϕ1(ω,1)+ϕ1

ϕ1(ω, 1) ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ωϕε0+ϕ1(ω,1,0)+ωϕ1(ω,1)+ϕ1

ϕ1(ω, 1, 0) + ϕ1 ϕ1 ωω
ϕ1(ω,1,0)+ϕ1

ϕ1(ω, 1, 0) + ϕ1 ϕ3 ϕ3

ϕ1(ω, 1, 0) + ϕ1 ϕ3(1, 0, 0) ϕ3(1, 0, 0)

ϕ1(ω, 1, 0) + ϕ1 ϕ1(ω, 1) ωω
ϕ1(ω,1,0)+ϕ1(ω,1)

ϕ1(ω, 1, 0) + ϕ1 ϕ1(ω, 1, 0) + ϕ1 ωω
(ϕ1(ω,1,0)2)+ωϕ1(ω,1,0)+ϕ1

ϕ1(ω, 1, 0) + ϕ1 ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ωϕε0+ω(ϕ1(ω,1,0)2)+ωϕ1(ω,1,0)+ϕ1

ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ϕ1 ωω
ϕε0+ϕ1

ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ϕ3 ωω
ϕε0+ϕ3

ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ϕ3(1, 0, 0) ωω
ϕε0+ϕ3(1,0,0)

ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ϕ1(ω, 1) ωω
ϕε0+ϕ1(ω,1)

ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ϕ1(ω, 1, 0) + ϕ1 ωω
ϕε0+ϕ1(ω,1,0)+ωϕε0+ϕ1

ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ϕε0 + ϕ1(ω, 1, 0) + ϕ1 ωω
(ϕε02)+ωϕε0+ϕ1(ω,1,0)+ωϕε0+ϕ1

Table 19: IterFuncOrdinal exponential examples
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8 Countable admissible ordinals

The first admissible ordinal is ω. ωCK1 (the Church-Kleene ordinal) is the second. This latter
is the ordinal of the recursive ordinals. For simplicity it will be written as ω1 (see note 5).
Gerald Sacks proved that the countable admissible ordinals are those defined like ω1, but
using Turing Machines with oracles (see Note 9)[14]. For example ω2 is the set of all ordinals
whose structure can be enumerated by a TM with an oracle that defines the structure of all
recursive ordinals.

The completed infinite totality of a Turing Machine oracle can be avoided by generalizing
the concept of a well founded recursive process. A first order well founded recursive process is
one that accepts an indefinite number of integer inputs and halts for every possible sequence
of these inputs. Recursive ordinals are the well orderings definable by such a process. This
definition can be iterated by defining a process of type x + 1 to be well founded for all
sequences of processes of type x. (Type 0 is the integers.) This can be iterated up to
any countable ordinal. The admissible ordinals are a very sparse set of limit ordinals. In
this document admissible level ordinals are all ordinals ≥ ωCK1 , the ordinal of the recursive
ordinals. The ‘admissible index’ refers to the κ index in ωκ.

8.1 Typed parameters and limitOrd

Notations defined here give the structure of ordinals through the limitElement and compare

functions. For admissible level ordinals compare is adequate, although it is now operating
on an incomplete domain. However limitElement can no longer define how a limit ordinal
is built up from smaller ordinals, because admissible level ordinal notations cannot always
be defined as the limit of a recursive sequence of smaller notations.

As an adjunct to Ordinal::limitElement, Ordinal::limitOrd is defined. It accepts
ordinal notations α less than ωβ where β is the limitType of the ordinal limitOrd is called
from. The value of limitType is accessed with a member function of that name.

For example one can can define limitOrd for ω1 to be the identity function that accepts
any notation for a recursive ordinal as input and outputs its input. Then the union of the
outputs for inputs satisfying this criteria is ω1, This is not the way limitOrd is defined. It
is used to define new ordinals that help to fill the gaps between admissible levels, but this
illustrates how limitOrd is able to partially provide the defining function that limitElement
serves for recursive ordinal notations. limitElement is restricted to integer inputs. In
contrast limitOrd has a complex set of rules to specify which parameters are legal in a
given context.

Table 20 shows the maximum value of limitType over ranges of ordinal values. Note
whenever the admissible index (α in wα) is a limit ordinal, the limitType of ωα is defined
to be the limitType of α. limitType is fully defined in Section 8.3. An additional func-
tion, α.maxLimitType(), returns the maximum value of limitType for any ordinal β ≤ α.
α.limitOrd(β) is defined iff β.maxLimitType() < α.limitType()

The ordinal represented by a notation α is the union of α.limitOrd(β) for all β such
that β.maxLimitType() < α.limitType()38 In contrast to recursive ordinals, the notations

38The theory of admissible level ordinals is in some ways similar to the cardinals in set theory. In set
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α Maximum α.limitType() in range

0 or a successor (< ω1) 0 (nullLimitType)
recursive limit ordinal (< ω1) 1 (integerLimitType)
ω1 ≤ α < ω2 2 (recOrdLimitType)
ωn ≤ α < ωn+1 n + 1
α = ωω 1 (integerLimitType)
ωω+5 ≤ α < ωω+6 ω + 5
α = ωω1 2 (recOrdLimitType)
ωω1+1 ≤ α < ωω1+2 ω1 + 1

Table 20: Value of limitType

whose union is an admissible level ordinal (≥ ω1) are not recursively enumerable. However
the operation that goes from some notation not1 to limitOrd(not1) is recursive for the
domain of notations defined at any point in time.

The explicitly typed hierarchy in this document is a bit reminiscent of the explicitly
typed hierarchy in Whitehead and Russell’s Principia Mathematica[16].

8.2 Admissible level ordinal notations

Notation systems are expanded to represent larger ordinals than those represented already.
At the admissible level they can be expanded to partially fill the gaps in a necessarily
incomplete system. ωα.limitOrd(β) is defined as ωα[β]. The idea is that this new parameter
starts by diagonalizing what is definable by previous defined notations. This begins with
ω1.limitOrd(1) or ω1[1]. This is defined to be the limit of the recursive ordinals definable
in the IterFuncOrdinal class. This is the sequence ω, ϕω, ϕϕω+1, ϕϕϕω+1+1, ... The union of
that sequence is represented by ω1[1]. For an ordinal, β, ω1[β + 1] is defined as the union of
the sequence

ω1[β], ϕω1[β]+1, ϕϕω1[β]+1+1, ϕϕϕω1[β]+1+1+1, ..., .

For β a limit, ωα[β] is the union of ωα[γ] for γ < β. A complete description of the
limitElement and limitOrd functions is given in Sections 9.2 and 9.5.

The normal form notation for one term of an admissible level ordinal adds a parameter
of the admissible index (the most significant parameter) and a parameter in square brackets
which signifies a smaller ordinal then the same term without an appended square bracketed
parameter. There is a third option using double square brackets, [[]] to facilitate a form or
collapsing described in Section 8.4.

The rest of the equation for one term in the normal form is the same as that for an
IterFuncOrdinal shown in Equation 7. The C++ class for a single term of an admissible
level ordinal notation is AdmisNormalElement and the class for an admissible level ordinal
notation is AdmisLevOrdinal.

The AdmisNormalElement term of an AdmisLevOrdinal is one of the following forms.

theory there is a cardinal that is the union of finite iterations of the power set axiom. It is the union of
a countable number of smaller sets. This contrasts with set of all reals which is not constructable from a
smaller collection of smaller sets. Such sets are called regular cardinalss. (This definition requires the .)
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Ordinal LimitElements
1 2 3

[[1]]ω1 ω1[ω] ω1[ω1[ω]] ω1[ω1[ω1[ω]]]
[[1]]ω2 [[1]]ω1 [[1]]ω1,[[1]]ω1+1 [[1]]ω1,[[1]]ω1,[[1]]ω1+1+1

[[1]]ω3 [[1]]ω2 [[1]]ω2,[[1]]ω2+1 [[1]]ω2,[[1]]ω2,[[1]]ω2+1+1

[[2]]ω2 ω2[1] ω2[2] ω2[3]
[[2]]ω3 [[2]]ω3[1] [[2]]ω3[2] [[2]]ω3[3]
[[1]]ωω [[1]]ω2 [[1]]ω3 [[1]]ω4

[[2]]ωω [[2]]ω3 [[2]]ω4 [[2]]ω5

[[ω]]ωω [[1]]ω1 [[2]]ω2 [[3]]ω3

[[ωω]]ωωω [[ω]]ωω [[ω2]]ωω2 [[ω3]]ωω3

Table 21: δ parameter examples

ωκ,γ(β1, β2, ..., βm) (8)

ωκ[η] (9)

[[δ]]ωκ[η] (10)

[[δ]]ωκ,γ(β1, β2, ..., βm) (11)

The γ and βi parameters are defined as they are in Equation 7. The existence of any of
these parameters defines a larger ordinal then the same notation without them. In contrast
to every parameter defined so far, the η parameter drops down to a lower level ordinal. For
example, ω1[α] is a recursive ordinal necessarily smaller than ω1. The η parameter is only
defined when γ and βi are zero and κ is a successor.

The δ parameter, like the η parameter, defines a smaller ordinal than the same expression
without this parameter. In particular it “collapses” the expression down to an ordinal < ωδ.
See Section 8.4 for a general description of collapsing. Table 21 gives some examples of how
the δ parameter is defined.

The idea of the δ parameter is to collapse an arbitrarily large subset of the entire structure
of countable ordinal notations as they are defined by a finite formal system at a specific stage
in its development39 at various points in the hierarchy. This is a bit like the Mandelbrot
set[10] that embeds its entire structure within itself in an expanding infinite tree.

8.3 limitType of admissible level notations

The κ parameter in equations 8 to 11 determines the limitType of an admissible level nota-
tion with no other nonzero parameters. If κ is a limit then ωκ.limitType() = κ.limitType().
If κ is a finite successor then ωκ.limitType() = κ + 1. If κ > ω and κ is a successor then
ωκ.limitType() = κ.

39The underlying philosophy is that a finite formal system is an intrinsically incomplete structure that can
always be expanded.
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If an admissible level ordinal, α, has parameters other than κ, the least significant param-
eter determines the limitType of α. If the least significant parameter, β, is a limit ordinal
then the limitType of β is the the limitType of α. if the least significant parameter of the
notation is a successor then the limitType of the notation is 1 (or integer). In this case the
limit is an infinite sequence of nested expressions. These rules are summarized in Table 22.

The δ parameter in equation 11 modifies the definition of limitType. If all parameters
except δ and κ are 0 and δ is a successor, then δ determines the limitType just as κ did
in the above paragraph. A nonzero δ parameter puts an upper bound on the limitType of
any ordinal no matter what other parameters it has. The complete rules for limitType are
in Section 9.3 and those for maxLimitType are in Section 9.4.

8.4 Ordinal collapsing

Collapsing40expands recursive ordinal notations using ordinals of higher type (admissible
level or uncountable) to expand the hierarchy of recursive ordinal notations[1, 12]. There is
an element of collapsing with the η parameter in square brackets defined in Section 8.2 in
that it diagonalizes the earlier definitions of recursive ordinals by referencing a higher level
notation. Before describing collapsing with the δ parameter, we give a brief overview of an
existing approach.

One can define a collapsing function, Ψ(α) on ordinals to countable ordinals41. Ψ(α) is
defined using a function C(α), from ordinals to sets of ordinals. C(α) is defined inductively
on the integers for each ordinal α using Ψ(β) for β < α.

• C(α)0 = {0, 1, ω,Ω} (Ω, is the ordinal of the countable ordinals.)

• C(α)n+1 = C(α)n ∪ {β1 + β2, β1β2, β1
β2 : β1, β2 ∈ C(α)n} ∪ {Ψ(β) : β ∈ C(α)n

∧ β < α}.

• C(α) =
⋃
n∈ω C(α)n.

• Ψ(α) is defined as the least ordinal not in C(α).

Ψ(0) = ε0 because ε0 is the least ordinal not in C(0). (ε0 is the limit of ω, ωωωω
ω
, ...,.)

Similarly Ψ(1) = ε1, because C(1) includes Ψ(0) which is ε0. For a while Ψ(α) = εα.
This stops at ϕ(2, 0) which is the first fixed point of α 7→ εα. Ψ(ϕ(2, 0)) = ϕ(2, 0) but
Ψ(ϕ(2, 0) + 1) = ϕ(2, 0) also. The function remains static because ϕ(2, 0) is not in C(α) for
α ≤ Ω.

Ψ(Ω) = ϕ(2, 0), but Ω was defined to be in C(α)0 and thus C(Ω + 1) includes Ψ(Ω)
which is ϕ(2, 0). Thus Ψ(Ω + 1) = εϕ(2,0)+1. Ψ(α) becomes static again at α = ϕ(2, 1) the
second fixed point of α 7→ εα. However ordinals computed using Ω support getting past

40Ordinal collapsing is also known as projection. I prefer the term collapsing, because I think the proofs
have more to do with syntactical constructions of mathematical language than they do with an abstract
projection in a domain the symbols refer to. Specifically I think cardinal numbers, on which projection is
most often based, have only a relative meaning. See Section 10 for more about this philosophical approach

41This description is largely based on the Wikipedia article on “Ordinal collapsing function” as last mod-
ified on April 14, 2009 at 15:48. The notation is internally consistent in this document and differs slightly
from the Wikipedia notation.
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Rules

Case limitType

1 α = ωκ κ a successor κ is finite → κ+ 1 else κ
least significant

2 parameter, α, is limit α.limitType()
γ a successor

3 and least significant integerLimitType = 1

2 least significant
4 parameters are successors integerLimitType = 1

least significant parameter
is successor and next least,

5 α, is a limit α.limitType()

Examples

α α.limitType() Rule

ω1 2 1
ω2 3 1
ω2,ωω 1 2
ωω 1 2
ωωωω,4 1 2

ωω,5(3) 1 4
ωω,ω1(4) 2 5
ωωωω+1,5,5 1 3

ωω4(3) 1 5
ωω+5 ω + 5 1
ωω,ωω+5 ω + 5 2

ωω
ωω

(ω12)
+6

(3, 5, ω
ωω

(ω12)
+6

) ωω
(ω12)

+ 6 2

ωω5,3 1 3

ωω
ωω

(ω12)
+6

ωω
(ω12)

+ 6 2

ωω,ωω
ωω

(ω12)
+6

ωω
(ω12)

+ 6 2

ωω,ω1+6 1 5

Table 22: AdmisNormalElement::limitTypes
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fixed points in the same way that Ω did. The first case like this is Ψ(Ω2) = ϕ(2, 1) and thus
Ψ(Ω2 + 1) = εϕ(2,1)+1.

Each addition of 1 advances to the next ε value until Ψ gets stuck at a fixed point. Each
addition of Ω moves to the next fixed point of α 7→ εα so that Ψ(Ω(1 + α)) = ϕ(2, α) for
α < ϕ(3, 0). Powers of Ω move further up the Veblen hierarchy: Ψ(Ω2) = ϕ(3, 0), Ψ(Ωβ) =
ϕ(1 + β, 0) and Ψ(Ωβ(1 + α)) = ϕ(1 + β, α). Going further Ψ(ΩΩ) = Γ(0) = ϕ(1, 0, 0),
Ψ(ΩΩ(1+α)) = ϕ(α, 0, 0) and Ψ(ΩΩ2

) = ϕ(1, 0, 0, 0),
Collapsing, as defined here, connects basic ordinal arithmetic (addition, multiplication

and exponentiation) to higher level ordinal functions. Ordinal arithmetic on Ω gets past
fixed points in the definition of Ψ until we reach an ordinal that is not in C(α) either
by definition or by basic ordinal arithmetic on ordinals in C(α). This is the ordinal εΩ+1

42.

Ψ(εΩ+1)= Ψ(Ω)
⋃

Ψ(ΩΩ)
⋃

Ψ(ΩΩΩ
)
⋃

Ψ(ΩΩΩΩ

)
⋃
... This is the Bachmann-Howard ordinal[8].

It is the largest ordinal in the range of Ψ as defined above. Ψ(α) is a constant for α ≥ εΩ+1

because there is no way to incorporate Ψ(εΩ+1) into C(α).

42Note εΩ = Ω.
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Notation
# Ψ ϕ ω Bound

1 Ψ(α) εα α < ϕ(2, 0)
2 Ψ(Ω13) ϕ(2, 12)
3 Ψ(Ω(1 + α)) ϕ(2, α) α < ϕ(3, 0)
4 Ψ(Ω26) ϕ(3, 5)
5 Ψ(Ω2(1 + α)) ϕ(3, α) α < ϕ(4, 0)
6 Ψ(Ω116) ϕ(12, 5)
7 Ψ(Ωβ(1 + α)) ϕ(1 + β, α) α < ϕ(1 + β, 0) ∧ β < ϕ(1, 0, 0)
8 Ψ(ΩΩ) ϕ(1, 0, 0) = Γ0

9 Ψ(ΩΩ2) ϕ(2, 0, 0)

10 Ψ(Ω(Ω2+3)6) ϕ(2, 3, 5)

11 Ψ(ΩΩ2
) ϕ(1, 0, 0, 0)

12 Ψ(ΩΩn) ϕ(11, 02, ..., 0n+2)
13 Ψ(ΩΩnα1) ϕ(α1, 02, ..., 0n+2) α1 < ϕ(11, 02, ..., 0n+3)
14 Ψ(ΩΩω) ϕ1

15 Ψ(ΩΩω5) ϕ1(5)

16 Ψ(ΩΩω(1+α)) ϕ1(α) α < ϕ1(1, 0)

17 Ψ(Ω(Ωω(Ω4+2))) ϕ1(4, 2)

18 Ψ(ΩΩω2
) ϕ2

19 Ψ(ΩΩω
2

) ϕω

20 Ψ(ΩΩω
α

) ϕα α < ω1[1]

21 Ψ(ΩΩΩ
) ω1[1]

22 Ψ(ΩΩΩΩ

) [[1]]ω1

23 Ψ(ΩΩΩΩΩ

) [[1]]ω2

24 Ψ(εΩ+1) [[1]]ωω

Table 23: Ψ collapsing function with bounds

45



N
ot

at
io

n
l
i
m
i
t
E
l
e
m
e
n
t

#
Ψ
/
ϕ

ω
1

2
3

4
Ψ

(Ω
)

Ψ
(1

)
Ψ

(Ψ
(1

)
+

1)
Ψ

(Ψ
(Ψ

(1
)

+
1)

+
1)

Ψ
(Ψ

(Ψ
(Ψ

(1
)

+
1)

+
1)

+
1)

1
ϕ

(2
,0

)
ε 1

ε ε
1
+

1
ε ε

ε
1
+

1
+

1
ε ε

ε
ε
1
+

1
+

1
+

1

Ψ
(Ω

2
)

Ψ
(Ω

2)
Ψ

(Ω
(Ψ

(Ω
2)

+
1)

)
Ψ

(Ω
(Ψ

(Ω
(Ψ

(Ω
2)

+
1)

)
+

1)
)

Ψ
(Ω

(Ψ
(Ω

(Ψ
(Ω

(Ψ
(Ω

2)
+

1)
)

+
1)

)
+

1)
)

2
ϕ

(3
,0

)
ϕ

(2
,1

)
ϕ

(2
,ϕ

(2
,1

)
+

1)
ϕ

(2
,ϕ

(2
,ϕ

(2
,1

)
+

1)
+

1)
ϕ

(2
,ϕ

(2
,ϕ

(2
,ϕ

(2
,1

)
+

1)
+

1)
+

1)
Ψ

(Ω
ω

)
Ψ

(0
)

Ψ
(Ω

)
Ψ

(Ω
2
)

Ψ
(Ω

3
)

3
ϕ

(ω
,0

)
ε 0

ϕ
(2
,0

)
ϕ

(3
,0

)
ϕ

(4
,0

)

Ψ
(Ω

Ω
)

Ψ
(0

)
Ψ

(Ω
Ψ

(0
)+

1
)

Ψ
(Ω

Ψ
(Ω

Ψ
(0

)+
1
)+

1
)

Ψ
(Ω

Ψ
(Ω

Ψ
(Ω

Ψ
(0

)+
1
)+

1
)+

1
)

4
Γ

0
ε 0

ϕ
(ε

0
+

1,
0)

ϕ
(ϕ

(ε
0

+
1,

0)
+

1,
0)

ϕ
(ϕ

(ϕ
(ε

0
+

1,
0)

+
1,

0)
+

1,
0)

Ψ
(Ω

Ω
2
)

Ψ
(Ω

Ω
)

Ψ
(Ω

Ω
Ψ

(Ω
Ω

)+
1
)

Ψ
(Ω

Ω
Ψ

(Ω
Ω

Ψ
(Ω

Ω
)+

1
)+

1
)

Ψ
(Ω

Ω
Ψ

(Ω
Ω

Ψ
(Ω

Ω
Ψ

(Ω
Ω

)+
1
)+

1
)+

1
)

5
ϕ

(1
,0
,0
,0

)
Γ

0
ϕ

(Γ
0

+
1,

0,
0)

ϕ
(ϕ

(Γ
0

+
1,

0,
0)

+
1,

0,
0)

ϕ
(ϕ

(ϕ
(Γ

0
+

1,
0,

0)
+

1,
0,

0)
+

1,
0,

0)

Ψ
(Ω

Ω
ω

)
ω

Ψ
(0

)
Ψ

(Ω
Ω

)
Ψ

(Ω
Ω

2
)

6
ϕ

1
ω

ε 0
Γ

0
ϕ

(1
,0
,0
,0

)

Ψ
(Ω

Ω
ω

2
)

Ψ
(Ω

Ω
ω

Ψ
(Ω

Ω
ω

)+
1
)

Ψ
(Ω

(Ω
ω

(Ω
Ψ

(Ω
Ω

ω
)+

1
))

)
Ψ

(Ω
(Ω

ω
(Ω

2
Ψ

(Ω
Ω

ω
)+

1
))

)
Ψ

(Ω
(Ω

ω
(Ω

3
Ψ

(Ω
Ω

ω
)+

1
))

)
7

ϕ
2

ϕ
1
(ϕ

1
+

1)
ϕ

1
(ϕ

1
+

1,
0)

ϕ
1
(ϕ

1
+

1,
0,

0)
ϕ

1
(ϕ

1
+

1,
0,

0,
0)

Ψ
(Ω

Ω
ω

2

)
Ψ

(Ω
Ω

ω

)
Ψ

(Ω
Ω

ω
2
)

Ψ
(Ω

Ω
ω

3
)

Ψ
(Ω

Ω
ω

4
)

8
ϕ
ω

ϕ
1

ϕ
2

ϕ
3

ϕ
4

Ψ
(Ω

Ω
Ω

)
ω

Ψ
(Ω

Ω
ω

2

)
Ψ

(Ω
Ω

Ψ
(Ω

Ω
ω

2
)+

ω

)
Ψ

(Ω
Ω

Ψ
(Ω

Ω
Ψ

(Ω
Ω

ω
2

)+
ω

)+
ω

)
9

ω
1
[1

]
ω

ϕ
ω

ϕ
ϕ

ω
+

1
ϕ
ϕ

ϕ
ω

+
1
+

1

Ψ
(Ω

Ω
Ω

ω

)
Ψ

(Ω
Ω

Ω
)

Ψ
(Ω

Ω
Ω

2
)

Ψ
(Ω

Ω
Ω

3
)

Ψ
(Ω

Ω
Ω

4
)

10
ω

1
[ω

]
ω

1
[1

]
ω

1
[2

]
ω

1
[3

]
ω

1
[4

]

Ψ
(Ω

Ω
Ω

Ω

)
Ψ

(Ω
Ω

Ω
ω

)
Ψ

(Ω
Ω

Ω
Ψ

(Ω
Ω

Ω
ω

)
)

Ψ
(Ω

Ω
Ω

Ψ
(Ω

Ω
Ω

Ψ
(Ω

Ω
Ω

ω
)
)
)

Ψ
(Ω

Ω
Ω

Ψ
(Ω

Ω
Ω

Ψ
(Ω

Ω
Ω

Ψ
(Ω

Ω
Ω

ω
)
)
)
)

11
[[1

]]ω
1

ω
1
[ω

]
ω

1
[ω

1
[ω

]]
ω

1
[ω

1
[ω

1
[ω

]]]
ω

1
[ω

1
[ω

1
[ω

1
[ω

]]]
]

Ψ
(Ω

Ω
Ω

Ω
Ω

)
Ψ

(Ω
Ω

Ω
Ω

)
Ψ

(Ω
Ω

Ω
(Ω

Ω
Ψ

(Ω
Ω

Ω
Ω

)+
ω

)

)
Ψ

(Ω
Ω

Ω
(Ω

Ω
Ψ

(Ω
Ω

Ω
(Ω

Ω
Ψ

(Ω
Ω

Ω
Ω

)+
ω

)
)+

ω
)

)
Ψ

(Ω
Ω

Ω
(Ω

Ω
Ψ

(Ω
Ω

Ω
(Ω

Ω
Ψ

(Ω
Ω

Ω
(Ω

Ω
Ψ

(Ω
Ω

Ω
Ω

)+
ω

)
)+

ω
)

)+
ω

)

)
12

[[1
]]ω

2
[[1

]]ω
1

[[1
]]ω

1
,[

[1
]]
ω

1
+

1
[[1

]]ω
1
,[

[1
]]
ω

1
,[

[1
]]

ω
1
+

1
+

1
[[1

]]ω
1
,[

[1
]]
ω

1
,[

[1
]]

ω
1

,[
[1

]]
ω

1
+

1
+

1
+

1

Ψ
(ε

Ω
+

1
)

Ψ
(Ω

Ω
Ω

Ω
Ω

)
Ψ

(Ω
Ω

Ω
Ω

Ω
Ω

)
Ψ

(Ω
Ω

Ω
Ω

Ω
Ω

Ω

)
Ψ

(Ω
Ω

Ω
Ω

Ω
Ω

Ω
Ω

)
13

[[1
]]ω

ω
[[1

]]ω
2

[[1
]]ω

3
[[1

]]ω
4

[[1
]]ω

5

T
ab

le
24

:
Ψ

co
ll
ap

si
n
g

fu
n
ct

io
n

at
cr

it
ic

al
li
m

it
s

46



Table 23 connects the notations defined by the Ψ function to those defined with equa-
tions 8 to 11. Lines up to 12 follow from the above description. This line uses parameter
subscripts to indicate the number of parameters. Otherwise it is straightforward. In line
14 ϕ1 is the first fixed point not reachable from Veblen functions with a finite number of
parameters. ϕ1 =

⋃
n∈ω ϕ(11, 02, 03..., 0n). Lines 18, 19 and 20 illustrate how each increment

of α by one in ϕα adds a factor of ω to the the highest order exponent in Ψ notation. This
maps to the definition of ϕα in Section 5.5.

Table 24 provides additional detail to relate the Ψ notation to the notation in this doc-
ument. It covers the range of the Ψ function at critical limits. For each entry the table
gives the ordinal notation and first 4 elements in a limit sequence that converges to this
ordinal. This same information is repeated in paired lines. The first is in Ψ notation and the
second in the notation defined in this document. It illustrates the conditions in which the
Ψ notation requires another level of exponentiation. This happens with limiting sequences
that involve ever higher levels of exponentiation of the largest ordinals defined at that level
in the Ψ notation. This occurs in lines 4, 9, 11 and 12 of the table corresponding to Ω raised
to the second through fifth powers.

8.5 Displaying Ordinals in Ψ format

Function Ordinal::psiNormalForm provides a display option for the Ψ function format in
addition to the display functions described in Section 4.1. It provides a limited display
capability. Not all values can be converted. This is due in part to the erratic nature of Ψ
as it gets stuck at various fixed points. The purpose is to provide an automated conversion
that handles the primary cases throughout the Ψ hierarchy just defined. If a value is not
displayable then the string ‘not Ψ displayable’ is output in TEX format. Many of the
tables in this section use psiNormalForm. It is accessible in the interactive calculator as
described in Section A.8.2 under the opts command.

8.6 Admissible level ordinal collapsing

For any two ordinals ωα and ωα+1 there is an unclosable gap into which one can, in a sense, fit
any finite notation system that has been or ever will be developed. The only well orderings
fully definable in a finitely axiomatizable system are, by definition, recursively enumerable.
As mentioned before finite formulations of a fragment of the countable admissible level
hierarchy are a bit like the Mandelbrot set where the entire structure is embedded again and
again at many points in an infinite tree43

The idea is to “freeze” the structure at some point in its development and then embed this
frozen image in an unfrozen version of itself. It is a bit like taking recursion to a higher level
of abstraction. This is accomplished with notations in the form of equations 10 ([[δ]]ωκ[η])
and 11 ([[δ]]ωκ,γ(β1, β2, ..., βm)). They both define a value < ωδ. It is required that κ ≥ δ44.
The idea is to use notations up through any ωκ definable in the frozen system to define
ordinal notations < ωδ in the unfrozen system.

43Ordinal hierarchies have infinite ascending chains (for example the positive integers) but cannot have
infinite descending chains (like the negative integers).

44Note that any notation from equations 10 and 11 that starts with [[1]] must define a recursive ordinal.
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This starts by diagonalizing what can be defined with ωκ[η]. See Table 25 for the definition
of [[1]]ω1. The complete definition of δ (and the other parameters in equations 10 and 11) are
in sections 9.2 and 9.5 that document the limitElement and limitOrd member functions.

8.7 Functional hierarchies and collapsing

In sections 2.2 and 8 ordinals were described in terms of well founded functional hierarchies.
The idea is that one starts with processes well founded for arbitrary sequences of integers.
Such processes are called type 1. Next consider processes well founded for arbitrary sequences
of Gödel numbers of type 1 processes. This can be iterated up to any integer and iterated
further up to any ordinal definable by this process. At limit ordinals one considers a process
that is well founded for all lower type processes.

In constructing a functional hierarchy like this one makes it explicitly incomplete and
general enough to be expandable to any level in the hierarchies outlined above. One can
think of collapsing in this context as dropping down the hierarchy to lower levels using
specific parameter sequences.
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9 AdmisLevOrdinal class

The AdmisLevOrdinal class goes beyond the recursive ordinals to construct notations for
countable admissible ordinals beginning with the Church-Kleene or second admissible or-
dinal45. This is the ordinal of the recursive ordinals. class AdmisLevOrdinal is derived
from base classes starting with IterFuncOrdinal. The Ordinals it defines can be used in
constructors for the Ordinal base classes it is derived from. However AdmisLevOrdinals
are different from ordinals constructed with those base classes. For every recursive ordinal
there is a finite notation system that can enumerate a notation for that ordinal and every
ordinal less than it such that there is a recursive ordering of the notations isomorphic to
the ordering of the ordinals they represent. This is not true for the ordinal of the recursive
ordinals or any larger ordinal.

Three new member functions: limitOrd, limitType and maxLimitType are needed for
this class to deal with the limitations that exist at this level of the ordinal hierarchy. These
functions are outlined in Section 8 and described in detail in sections 9.3 (for limitType),
9.4 (for maxLimitType) and 9.5 (for limitOrd).

C++ class AdmisLevOrdinal is derived from class IterFuncOrdinal which in turn is
derived from FiniteFuncOrdinal and Ordinal. It implements an iterative function hier-
archy syntactically similar to that described in Section 5.5. It uses an expanded version of
the normal form in Equation 7 given in equations 8 to 11. The class for a single term of
an AdmisLevOrdinal is AdmisNormalElement. It is derived from IterFuncNormalElement

and its base classes.
All parameters (except κ) can be zero. Omitted parameters are set to 0. To omit κ

use the notation for an IterFuncOrdinal in Equation 7. κ is the admissible index, i. e.
(the κ in ωκ). ω1 is the ordinal of the recursive ordinals or the smallest ordinal that is
not recursive. The expanded notation at this level is specified in Section 8.2. Parameters
γ and βi have a definition similar to that in Table 10 and are explained in section 9.2 on
AdmisNormalElement::limitElement and section 9.5 on AdmisNormalElement::

limitOrd as are the new parameters in this class: κ, η and δ.
The AdmisLevOrdinal class should not be used directly to create ordinal notations.

Instead use function admisLevelFunctional which checks for fixed points and creates unique
notations for each ordinal46. This function takes up to five arguments. The first two are
required and the rest are optional. The first gives the admissible ordinal index, the κ in ωκ.
The second gives the level of iteration or the value of γ in equations 8 and 11. The third
gives a NULL terminated array of pointers to Ordinals which are the βi in equations 8 and 11.
This parameter is optional and can be created with function createParameters described
in Section 6. The fourth parameter is an ordinal reference that defaults to 0. It is the value
of η in Equations 9 and 10. The fifth parameter is an Ordinal reference which defaults to
zero. It is the value of δ in equations 10 and 11. Some examples are shown in Table 26.

45The first admissible ordinal is the ordinal of the integers, ω.
46 In the interactive ordinal calculator one can use notations like [[delta]] omega { kappa, lambda}

(b1,b2,...,bn). For more examples see sections A.11.7, A.11.8 and A.11.9.
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‘cp’ stands for createParameters and ‘af’ stands for admisLevelFunctional

C++ code examples Ordinal

af(zero,zero,cp(&one)) ω
af(zero,one,cp(&one,&zero)) ϕ1(1, 0)
af(one,zero,cp(&one,&one,&zero)) ω1(1, 1, 0)
af(one,zero) ω1

af(one,zero,NULL,eps0) ω1[ε0]
af(one,zero,NULL,Ordinal::five) ω1[5]
af(one,omega1CK,cp(&one)) ω1,ω1(1)
af(one,one,cp(&one,&omega1CK)) ω1,1(1, ω1)
af(one,Ordinal::two, cp(&one,&omega,&zero)) ω1,2(1, ω, 0)
af(omega,omega,cp(&one,&omega1CK,&zero,&zero)) ωω,ω(1, ω1, 0, 0)
af(omega1CK,omega) ωω1,ω

af(one,omega,cp(&iterativeFunctional(omega))) ω1,ω(ϕω)
af(af(one,zero)+1,zero,NULL,omega) ωω1+1[ω]
af(Ordinal::two,zero,NULL,zero,Ordinal::two) [[2]]ω2

af(Ordinal::omega,zero,NULL,zero,Ordinal::three) [[3]]ωω
af(omega,zero,NULL,zero,omega) [[ω]]ωω
af(Ordinal::two,omega1CK,cp(&one),zero,Ordinal::two) [[2]]ω2,ω1(1)
af(omega,omega,cp(&one,&omega1CK,&zero),zero,one) [[1]]ωω,ω(1, ω1, 0)

Table 26: admisLevelFunctional C++ code examples

9.1 AdmisNormalElement::compare member function

AdmisNormalElement::compare supports one term in the normal form in Equation 7 ex-
panded with terms in the form of equations 8 to 11. AdmisNormalElement::compare com-
pares its CantorNormalElement parameter trm, against the AdmisNormalElement instance
compare is called from. As with FiniteFuncOrdinals and IterFuncOrdinals, the work of
comparing Ordinals with multiple terms is left to the Ordinal and OrdinalImpl base class
functions which call the virtual functions that operate on a single term.

AdmisNormalElement::compare, with a CantorNormalElement and an ignore factor flag
as arguments, overrides IterFuncNormalElement::compare with the same argument (see
Section 7.1). It outputs 1, 0 or -1 if the object it is called from is greater than equal to
or less than its argument. There are two versions of AdmisNormalElement::compare the
first has two arguments as described above. The second is for internal use only and has
two additional ‘context’ arguments. the context for the base function and the context for
the argument. The context is the value of the δ parameter in force at this stage of the
compare. The three base classes on which AdmisNormalElement is built also support this
context sensitive version of compare.

compare first checks if its argument’s codeLevel is > admisCodeLevel. If so it calls a
higher level routine by calling its argument’s member function. The code level of the class

object that AdmisNormalElement::compare is called from should always be admisCodeLevel.
The δ parameter makes comparisons context sensitive. The δ values of the base object

and compare’s parameter are relevant not just for comparing the two class instances but
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also for all comparisons of internal parameters of those instances. Thus context sensitive
compare passes the δ values to compares that are called recursively. For base classes that
AdmisNormalElement is derived from, these additional arguments are only used to pass on
to their internal compare calls. The δ values contexts only modify the meaning of ordinal
notations for admissible level ordinals. The context sensitive version of the virtual function
compare has four arguments.

• const OrdinalImpl& embdIx — the context for the base class object from which
this compare originated.

• const OrdinalImpl& termEmbdIx — the context of the CantorNormalElement term
at the start of the compare.

• const CantorNormalElement& trm — the term to be compared at this point in the
comparison tree.

• bool ignoreFactor — an optional parameter that defaults to false and indicates
that an integer factor is to be ignored in the comparison.

As with compare for FiniteFuncOrdinals and IterFuncOrdinals this function depends
on the getMaxParameter() that returns the maximum value of all the parameters (except
η and δ) in equations 8 and 11.

The logic of AdmisNormalElement::compare with the above four parameters is summa-
rized in Table 28. The original version of compare, without the context arguments, calls the
routine with context parameters.

9.2 AdmisNormalElement::limitElement member function

AdmisNormalElement::limitElement overrides IterFuncNormalElement::limitElement

(see Section 6.2). It operates on a single term of the normal form expansion and does the
bulk of the work, It takes a single integer parameter. Increasing values for the argument
yield larger ordinal notations as output. In contrast to base class versions of this routine,
in this version the union of the ordinals represented by the outputs for all integer inputs
are not necessarily equal to the ordinal represented by the AdmisNormalElement class

instance limitElement is called from. They are equal if the limitType of this instance of
AdmisNormalElement is integerLimitType (see tables 20 and 38).

As usual Ordinal::limitElement does the work of operating on all but the last term of
an Ordinal by copying all but the last term of the result unchanged from the input Ordinal.
The last term is generated based on the last term of the Ordinal instance limitElement is
called from. The three routines that implement AdmisNormalElement::limitElement are
outlined in tables 30 to 3247. Some examples are shown in Tables 33 to 35.

47Routine leUse is used when κ is a limit and the least significant parameter. One needs to take an
element from a sequence whose union is κ but one must insure that this does not lead to a value less than δ.
One also must insure that increasing inputs produce increasing outputs and the output is always less than
the input. The algorithm used has the same kernel code for this problem in limitOrd. See Note 48 on page
62 for a description of the algorithm.
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Symbol Meaning

cmp Gnu Multiple Precision Arithmetic comparison routine
compareFiniteParams compares βi in equations 8 and 11 in object it is

called from and its argument
δef effective (context dependent) value of δ
diff temporary value with compare result
effIndexCk minimum of κ, δ if δ > 0 otherwise κ
functionLevel γ parameter in equations 8 and 11
ignoreFactor parameter to ignore factor in comparison
(ignf) ignore factor and all but the first term
maxParameter largest parameter of class instance or trm
maxParamFirstTerm first term of largest parameter of trm
isZ isZero is value zero
parameterCompare check largest parameter of self and argument
this pointer to class instance called from
trm parameter comparing against
termEffIndexCK minimum of trm.κ, trm.δ if trm.δ > 0 otherwise κ
X exit code (see Note 36 on page 34)

Table 27: Symbols used in compare Table 28

See Table 27 for symbol definitions.
Comparisons use δ context for both operands.

Value is ord.compare(trm) : -1, 0 or 1 if ord <,=, > trm

X Condition Value
trm.codeLevel < admisCodeLevel

A2 trm.maxParameter.isZ 1
A3 maxParamFirstTerm ≥ *this (ignf) -1
A4 1
A5 (diff = parameterCompare(trm))6= 0 diff
A1 trm.codeLevel > admisCodeLevel

diff=-trm.compare(*this) diff

B δef 6= 0 ∧ trm.δef 6= 0 ∧ ((diff=δef.compare(trm.δef) 6= 0) diff

B1 (diff=effIndexCk.compare(termEffIndexCK)) 6= 0 diff

B1A (diff=indexCK.compare(trm.indexCK)) 6= 0 diff

!drillDown.isZ && !trm.drillDown.isZ

B2 (diff=drillDown.compare(trm.drillDown)) 6= 0 diff

B3 !drillDown.isZ && trm.drillDown.isZ -1
B4 drillDown.isZ && !trm.drillDown.isZ 1
A6 (diff=functionLevel.compare(trm.functionLevel)) 6= 0 diff

R (diff=compareFiniteParams(trm)) 6= 0 diff

S ignoreFactor 0
S (diff=cmp(factor,trm.factor) ∨ true diff

Table 28: AdmisNormalElement::compare summary
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Symbol Meaning

δck if κ = δ use δ − 1
ddLe drillDownLimitElement (Table 31)
dRepl copy ordinal called from replacing η parameter
embLe embedLimitElement (Table 32)
info LimitTypeInfo enum assigned to this limit
IFNE::leCom IterFuncNormalElement::limitElementCom (Section 7.2)
isLm isLimit

isSc isSuccessor

indexCKtoLimitType computes limitType from δ, κ, η
isZ isZero is value zero
le limitElement (Table 30)
lEmb(e) limitMaxEmbed(limit) insure δ < limit by removing δ
α.leUse(n) Compute a safe value for le(n), see Note 47 on page 52
lme limitMaxEmbed limit maximum δ < global δ
lSg value of least significant nonzero βi
lsx index of least significant nonzero βi
lo limitOrd (Table 39)
α.loUse(n) Computes a safe value for lo(ord), see Note 48 on page 62
lp1 limPlus 1(Section 6.3)
nlSg value of next to least significant nonzero βi
nlsx index of next to least significant nonzero βi
rep1 replace1, rep1(i,val) replaces βi with val in ord see Table 9
rep2 replace2, a two parameter version of rep1 see Table 9
Rtn x x is return value
sz number of βi in equations 8 and 11
this pointer to class instance called from
X exit code (Note 36 on page 34)

Table 29: Symbols used in limitElement Tables 30 to 32 and limitOrd Table 39
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α is a notation from one of equations 8 to 11.
α = ωκ,γ(β1, β2, ..., βm) α = ωκ[η] α = [[δ]]ωκ[η] α = [[δ]]ωκ,γ(β1, β2, ..., βm)

See Table 29 for symbol definitions.

X Condition(s) LimitTypeInfo α.le(n)

DDA !η.isZ ddLe(n)

LA lSg.isLm paramLimit α.rep1(i,βi.le(n).lp1())
LB ∀iβi = 0 ∧ γ.isLm iterLimit [[δ]]ωκ,γ.le(n).lp1

EDDC κ.isLm ∧ γ.isZ ∧ !δ.isZ embLe(n)

LC κ.isLm ∧ γ.isZ ∧ δ.isZ indexCKlimit ωκ.le(ne).lp1()

sz=1 ∧γ.isZ ∧ β1.isSc e=κ.le(n)
CLLM κ.isLm ∧ κ = δ indexCKlimitParam [[e]]ωe,(ωκ((β1−1).lEmb(e))).lp1

CKLM κ.isLm ∧ κ 6= δ indexCKlimitParam [[δ]]ωthis−>leUse(n),ωκ(β1−1).lp1

sz = 1 ∧ γ.isZ ∧ b= [[δ]]ωκ(β1 − 1).lme
β1.isSc ∧ κ.isSc for(i=1;i<n;i++)

b=[[δck]]ωκ−1,b.lp1(β1 − 1)
CKSC indexCKsuccParam Rtn b

γ, isSc ∨ sz > 1 ∨
KA ((γ > 0) ∧ (sz = 1)) IFNE::leCom(n)

∀iβi = 0 ∧ γ = 0 ∧ κ.isSc
KEA κ.isSc ∧ δ > 0 indexCKsucc embLe(n)

KE κ.isSc ∧ δ = 0 indexCKsucc ωκ[n]

Table 30: AdmisNormalElement::limitElement cases

α is a notation from equations 9 or 10.
α = ωκ[η] α = [[δ]]ωκ[η]
The δ parameter is unchanged and not displayed below.

See Table 29 for symbol definitions.

X Condition(s) LimitTypeInfo α.le(n)

DDL η.isLm drillDownLimit ωκ[η.limitElement(n)]
DDKO η.isOne ∧ κ.isOne drillDownSucc b=ω ;for(i=1;i<n;i++)b=ϕb.lp1;Rtn b

DDO η.isOne ∧ κ > 1 drillDownSucc b= ωκ−1 ;for(i=1;i<n;i++)b=ωκ−1,b.lp1

η > 1 ∧ κ.isOne drillDownSucc b=dRepl(η − 1);
DDGA drillDownSucc for(i=1;i<n;i++)b=ϕb.lp1 ;Rtn b

η > 1 ∧ κ > 1 drillDownSucc b=dRepl(η − 1);
DDGB for(i=1;i<n;i++)b=ωκ−1,b.lp1;Rtn b

Table 31: AdmisNormalElement::drillDownlimitElement cases
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α is a notation from equation 10 or 11.
α = [[δ]]ωκ[η] α = [[δ]]ωκ,γ(β1, β2, ..., βm).

See Table 29 for symbol definitions.

X Condition(s) α.le(n)

EDEQ δ.isLm ∧ κ = δ ωκ.le(n)[[δ.le(n)]]
EDAB δ.isLm ∧ κ.isLm ∧ δ 6= κ ωleUse(κ.le(n),δ).lp1[[δ]]

κ.isSc ∧ δ.isLm b=[[δ]]ω[[δ]](ωκ−1).lp1

EDAC for(i=1;i<n;i++)b=[[δ]]ωκ−1,b.lp1;Rtn b

EDAD δ.isSc ∧ κ.isLm [[δ]]ω(κ.le(n)+δ).lp1

δ = 1 ∧ κ = 1 b=[[1]]ω1

EDEO for(i=1;i<n;i++)b=ω1[b];Rtn b

δ = κ ∧ δ.isSc b=ωκ[ωκ−1]
EDEE for(i=1;i<n;i++)b=ωκ[b];Rtn b

δ = 1 ∧ κ > 1 ∧ κ.isSc b=[[1]]ωκ−1

EDEF for(i=1;i<n;i++)b=[[1]]ωκ−1[b.lp1];Rtn b

δ > κ ∧ δ.isSc ∧ κ.isSc b=[[δ − 1]]ωκ−1,([[delta−1]]ωκ).lp1

EDEG for(i=1;i<n;i++)b=[[δ = 1]]ωκ−1,b.lp;Rtn b

Table 32: AdmisNormalElement::embedLimitElement cases
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AdmisLevOrdinal limitType maxLimitType

ωω integerLimitType (1) ω
ω1 recOrdLimitType (2) recOrdLimitType (2)
ϕ(ω1, 1, 0, 0) recOrdLimitType (2) recOrdLimitType (2)
ϕ(ω1 + 1, 1) integerLimitType (1) recOrdLimitType (2)
ω1[1] integerLimitType (1) integerLimitType (1)
ω1[2] integerLimitType (1) integerLimitType (1)
ω1[ω] integerLimitType (1) integerLimitType (1)
ω2[ω1] recOrdLimitType (2) recOrdLimitType (2)
ω2[ω1] recOrdLimitType (2) recOrdLimitType (2)
ω2[ω2[ω1]] recOrdLimitType (2) recOrdLimitType (2)
(ω14) recOrdLimitType (2) recOrdLimitType (2)

ω(ω12) recOrdLimitType (2) recOrdLimitType (2)
ω1(1) integerLimitType (1) recOrdLimitType (2)
ω1(1, 1) integerLimitType (1) recOrdLimitType (2)
ω1(1, 0, 1) integerLimitType (1) recOrdLimitType (2)
ω1(1, 1, 0) integerLimitType (1) recOrdLimitType (2)
ω1(ε0, 0) integerLimitType (1) recOrdLimitType (2)
ω1(ε0, 1, 0) integerLimitType (1) recOrdLimitType (2)
ω1(ε0, 1) integerLimitType (1) recOrdLimitType (2)

Table 36: AdmisLevOrdinal limitType and maxLimitType examples part 1.

9.3 AdmisNormalElement::limitType member function

For admissible level ordinals, limitElement must be supplemented with limitOrd that
accepts an arbitrary Ordinal as input. See Section 8.1 for the reasons behind limitOrd and
limitType. For a particular use of α.limitOrd(β), it must be true that β.maxLimitType <
α.limitType. limitType and maxLimitType both return an OrdinalImpl. The routine
that computes limitType also computes the enum LimitTypeInfo that labels limits and is
used by limitElement and limitOrd.

The limitType of an ordinal is the limitType of the least significant term. Thus
Ordinal::limitType calls the appropriate virtual function such as AdmisNormalElement::
limitType to do the bulk of the work of limitType. Table 38 gives the algorithm used in
AdmisNormalElement::limitType.

9.4 AdmisNormalElement::maxLimitType member function

maxLimitType is defined recursively. It is the maximum of of limitType and maxLimitType

for the ordinal and every parameter used in defining the ordinal. This is the complete
definition of maxLimitType for all base classes of AdmisLevOrdinal. The δ parameter puts
a constraining context on the recursive evaluation and the η parameter can also modify it.

AdmisNormalElement::maxLimitTypes calls IterFuncNormalElement::maxLimitType

for the maximum of all parameters except those unique to class AdmisLevOrdinal. Next,
the type of ωκ is computed and the maximum of these two values is taken. Finally, the effect
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AdmisLevOrdinal limitType maxLimitType

ωω1+1 integerLimitType (1) recOrdLimitType (2)
(ω12) recOrdLimitType (2) recOrdLimitType (2)
ωε0(1) integerLimitType (1) ε0

ωε0(2) integerLimitType (1) ε0

ωε0(ω) integerLimitType (1) ε0

ωε0+1(1) integerLimitType (1) ε0 + 1
ωε0,ω + ωω1+1 integerLimitType (1) ε0

ω1,ω(1) integerLimitType (1) recOrdLimitType (2)
ω1,ω(ω) integerLimitType (1) recOrdLimitType (2)
ω1,2(ε0) integerLimitType (1) recOrdLimitType (2)
ω1,1(2) integerLimitType (1) recOrdLimitType (2)
ω1,1(ε0) integerLimitType (1) recOrdLimitType (2)
ω1,1(1, 0, 0) integerLimitType (1) recOrdLimitType (2)
ω1,3(1, 0, 0) integerLimitType (1) recOrdLimitType (2)
ω1,1(ω, 1) integerLimitType (1) recOrdLimitType (2)
ω1,1(ω, 1, 0) integerLimitType (1) recOrdLimitType (2)
ω1,ε0 integerLimitType (1) recOrdLimitType (2)
ω1,Γ0(1, 0) integerLimitType (1) recOrdLimitType (2)
ω1,Γ0(ε0) integerLimitType (1) recOrdLimitType (2)
ω1,Γ0(ε0, 0) integerLimitType (1) recOrdLimitType (2)
ω1,Γ0(ε0, 1) integerLimitType (1) recOrdLimitType (2)
ω1,Γ0(ε0, 1, 1) integerLimitType (1) recOrdLimitType (2)
ω1,1 integerLimitType (1) recOrdLimitType (2)
ω1,3 integerLimitType (1) recOrdLimitType (2)
ω1,4 integerLimitType (1) recOrdLimitType (2)

Table 37: AdmisLevOrdinal limitType and maxLimitType examples part 2.
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α is a notation from one of equations 8 to 11.
α = ωκ,γ(β1, β2, ..., βm) α = ωκ[η] α = [[δ]]ωκ[η] α = [[δ]]ωκ,γ(β1, β2, ..., βm)

See Table 29 for symbol definitions.

Condition LimitTypeInfo limitType

η.isLm drillDownLimit η.limitType
η.isSc drillDownSuccLimit integerLimitType

lSg.isLm paramLimit βi.limitType
∀iβi = 0 ∧ γ.isLm iterLimit γ.limitType
lSg.isSc ∧ nlSg.isLm paramNxtLimit nlSg.limitType

lSg.isSc ∧ (sz> 1) paramSuccLimit integerLimitType

sz=1 ∧β1.isSc ∧ γ.isLm iterLimit γ.limitType
sz=1 ∧β1.isSc ∧ γ.isSc iterSucc integerLimitType

sz=1 ∧β1.isSc ∧ γ = 0 paramSucc integerLimitType

∀iβi = 0 ∧ γ = 0 ∧ κ.isLm indexCKlimit κ.limitType
∀iβi = 0 ∧ γ = 0 ∧ κ.isSc indexCKsucc indexCKtoLimitType

Table 38: AdmisNormalElement::limitType description

of the δ and η parameters are taken into account. δ puts an upper bound on maxLimitType.
A nonzero δ or η reduce the value of maxLimitType by 1 if it is a successor. If both are
present the value is only reduced by 1.

9.5 AdmisNormalElement::limitOrd member function

AdmisNormalElement::limitOrd extends the idea of limitElement for limitTypes beyond
the integers (integerLimitType). An Ordinal notation α represents the ordinal that is the
union of all ordinals with notations ζx such that βx.maxLimitType < α.limitType ∧ ζx =
α.limitOrd(βx).

limitOrd is defined for base classes down to Ordinal because instances of those classes
with appropriate parameters can have limitTypes greater than integerLimitType. For ex-
ample the expression ωω1×2 defines an Ordinal instance with limitType> integerLimitType.

Table 39 gives the logic of AdmisNormalElement::limitOrd. One complication with
limitOrd occurs when κ is the least significant non zero parameter and δ is nonzero. If
κ = δ then one can take limitOrd of both values (see the line in Table 39 with exit code
LOEG). If not, one must be careful to make sure that the value returned by limitOrd does
not have κ > δ this is done with routine loUse48.

9.6 AdmisLevOrdinal::fixedPoint member function

AdmisLevOrdinal::fixedPoint is used by admisLevelFunctional to create an instance of

48AdmisNormalElement::loUse has as its argument the argument to limitOrd. It computes le =
κ.limitOrd(ord). It may then add terms from δ to insure that the value of le≤ δ and insure that limitOrd
will have a larger output for a larger valid input. All terms in δ that are in le or less than terms in le
excluding the last term in le are ignored. The remainder are added to le.
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α is a notation from equations 8 to 11.
α = ωκ,γ(β1, β2, ..., βm) α = ωκ[η] α = [[δ]]ωκ[η] α = [[δ]]ωκ,γ(β1, β2, ..., βm)

See Table 29 for symbol definitions.

X Condition(s) Info α.limitOrd(ζ)

LOD η.isLm drillDownLimit ωκ,γ(β1, β2, .., βn)[η.lo(ζ)]
LOE lSg.isLm paramLimit α.rep1(i,βi.lo(ζ))

lSg.isSc nlSg.isLm paramNxtLimit t=rep1(lsx,lSg-1)

l=nlsig.lo(ζ).lp1
LOF Rtn rep2(lsx,l.lsx+1,t)

γ.isLm ∧ sz = 1∧ lsig.isSc iterNxtLimit t=[[δ]]ωκ(lsig− 1)
l=γ.lo(ζ).lp1

LOED Rtn [[δ]]ωκ,l(t)
LOEE ∀iβi = 0 ∧ γ.isLm iterLimit [[δ]]ωκ,γ.lo(ζ)

LOEF ∀iβi = 0 ∧ γ, δ = 0 ∧ κ.isLm indexCKlimit [[δ]]ωκ.lo(ζ)

∀iβi = 0 ∧ γ = 0
LOEG ∧ δ = κ ∧ κ.isLm indexCKlimit [[δ.lo(ζ)]]ωκ.lo(ζ)

∀iβi = 0 ∧ γ = 0
LOEH ∧ δ > 0 ∧ κ.isLm indexCKlimit [[δ]]ωκ.loUse(ζ)

LOI ∀iβi = 0 ∧ γ = 0 ∧ κ.isLm indexCKSucc [[δ]]ωκ[ζ]

Table 39: AdmisNormalElement::limitOrd cases

AdmisLevOrdinal limitOrd

parameter ω ε0 ω1

ω1 ω1[ω] ω1[ε0] limType too large
ω2 ω2[ω] ω2[ε0] ω2[ω1]
(ω14) (ω13) + ω1[ω] (ω13) + ω1[ε0] limType too large

ω(ω12) ωω1+ω1[ω] ωω1+ω1[ε0] limType too large
ωωω1+1(ωω1+1) ωωω1+1(ωω1+1[ω]) ωωω1+1(ωω1+1[ε0]) ωωω1+1(ωω1+1[ω1])

ωω1+1 ωω1+1[ω] ωω1+1[ε0] ωω1+1[ω1]
ω1,ω1 ω1,ω1[ω] ω1,ω1[ε0] limType too large
ω100 ω100[ω] ω100[ε0] ω100[ω1]
ω1,1(ω1) ω1,1(ω1[ω]) ω1,1(ω1[ε0]) limType too large
ω1,3(ω1) ω1,3(ω1[ω]) ω1,3(ω1[ε0]) limType too large
ωε0(ω1) ωε0(ω1[ω]) ωε0(ω1[ε0]) limType too large
ωε0+1(1) limType too large limType too large limType too large
ωε0,ω + ωω1+1 limType too large limType too large limType too large

Table 40: AdmisLevOrdinal::limitOrd examples.
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an AdmisLevOrdinal normal form (Equations 8 to 11) that is the simplest expression for
the ordinal represented. The routine has the following parameters.

• The admissible ordinal index or κ from Equation 8.

• The function level or γ from the equation.

• An index specifying the largest parameter of the ordinal notation being constructed.
If the largest parameter is the admissible ordinal index this index has the value
indexCKmaxParam defined as -2 in an enum. If the largest parameter is the function
level the index has the value iterMaxParam defined as −1.

• The function parameters (a NULL terminated array of pointers to Ordinals) or just
NULL of there are none. These are the βj from a term in Equation 7.

This function determines if the parameter, at the specified index, is a fixed point for
an AdmisLevOrdinal created with the specified parameters. If so, true is returned and
otherwise false. The routine that calls this routine selects the largest parameter from
the admissible ordinal index (κ), the function level (γ) and the array of Ordinal pointers
(βj) and indicates this in the index parameter, The calling routine checks to see if all less
significant parameters are 0. If not, this cannot be a fixed point. Thus fixedPoint is called
only if this condition is met.

Section 6.3 describes psuedoCodeLevel. If the psuedoCodeLevel of the selected param-
eter is less than or equal cantorCodeLevel, false is returned. If that level is greater than
AdmisCodeLevel, true is returned. The most significant parameter, the admissible level
index, cannot be a fixed point unless it has a psuedoCodeLevel > AdmisCodeLevel. Thus,
if the index selects the the admissible level index, and the previous test was not passed false

is returned. Finally an AdmisLevOrdinal is constructed from all the parameters except that
selected by the index. If this value is less than the selected parameter, true is returned and
otherwise false.

9.7 AdmisLevOrdinal operators

The multiplication and exponentiation. routines for FiniteFuncOrdinal, Ordinal and the
associated classes for normal form terms do not need to be overridden except for some
utilities such as that used to create a copy of an AdmisNormalElement normal form term
with a new value for factor.

Some multiplication examples are shown in Table 41 Some exponentiation examples are
shown in Table 42

10 Philosophical Issues

This approach to the ordinals has its roots in a philosophy of mathematical truth that rejects
the Platonic ideal of completed infinite totalities[3, 2]. It replaces the impredictivity inherent
in that philosophy with explicit incompleteness. It is a philosophy that interprets Cantor’s
proof that the reals are not countable as the first major incompleteness theorem. Cantor
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α β α× β
ω1 ω1 ω(ω12)

ω1 ϕ3 ωω1+ϕ3

ω1 ω1 + [[1]]ω3,1(1, 0, 1) ω(ω12) + ωω1+[[1]]ω3,1(1,0,1)

ω1 ω1,ω(ω, 1) ω1,ω(ω, 1)
ω1 ω1,ε0(ω, 1, 0) ω1,ε0(ω, 1, 0)
ω1 ωε0 ωε0
ϕ3 ω1 ω1

ϕ3 ϕ3 ω(ϕ32)

ϕ3 ω1 + [[1]]ω3,1(1, 0, 1) ω1 + [[1]]ω3,1(1, 0, 1)
ϕ3 ω1,ω(ω, 1) ω1,ω(ω, 1)
ϕ3 ω1,ε0(ω, 1, 0) ω1,ε0(ω, 1, 0)
ϕ3 ωε0 ωε0

ω1 + [[1]]ω3,1(1, 0, 1) ω1 ω(ω12)

ω1 + [[1]]ω3,1(1, 0, 1) ϕ3 ωω1+ϕ3

ω1 + [[1]]ω3,1(1, 0, 1) ω1 + [[1]]ω3,1(1, 0, 1) ω(ω12) + ωω1+[[1]]ω3,1(1,0,1)

ω1 + [[1]]ω3,1(1, 0, 1) ω1,ω(ω, 1) ω1,ω(ω, 1)
ω1 + [[1]]ω3,1(1, 0, 1) ω1,ε0(ω, 1, 0) ω1,ε0(ω, 1, 0)
ω1 + [[1]]ω3,1(1, 0, 1) ωε0 ωε0

ω1,ω(ω, 1) ω1 ωω1,ω(ω,1)+ω1

ω1,ω(ω, 1) ϕ3 ωω1,ω(ω,1)+ϕ3

ω1,ω(ω, 1) ω1 + [[1]]ω3,1(1, 0, 1) ωω1,ω(ω,1)+ω1 + ωω1,ω(ω,1)+[[1]]ω3,1(1,0,1)

ω1,ω(ω, 1) ω1,ω(ω, 1) ω(ω1,ω(ω,1)2)

ω1,ω(ω, 1) ω1,ε0(ω, 1, 0) ω1,ε0(ω, 1, 0)
ω1,ω(ω, 1) ωε0 ωε0
ω1,ε0(ω, 1, 0) ω1 ωω1,ε0 (ω,1,0)+ω1

ω1,ε0(ω, 1, 0) ϕ3 ωω1,ε0 (ω,1,0)+ϕ3

ω1,ε0(ω, 1, 0) ω1 + [[1]]ω3,1(1, 0, 1) ωω1,ε0 (ω,1,0)+ω1 + ωω1,ε0 (ω,1,0)+[[1]]ω3,1(1,0,1)

ω1,ε0(ω, 1, 0) ω1,ω(ω, 1) ωω1,ε0 (ω,1,0)+ω1,ω(ω,1)

ω1,ε0(ω, 1, 0) ω1,ε0(ω, 1, 0) ω(ω1,ε0 (ω,1,0)2)

ω1,ε0(ω, 1, 0) ωε0 ωε0
ωε0 ω1 ωωε0+ω1

ωε0 ϕ3 ωωε0+ϕ3

ωε0 ω1 + [[1]]ω3,1(1, 0, 1) ωωε0+ω1 + ωωε0+[[1]]ω3,1(1,0,1)

ωε0 ω1,ω(ω, 1) ωωε0+ω1,ω(ω,1)

ωε0 ω1,ε0(ω, 1, 0) ωωε0+ω1,ε0 (ω,1,0)

ωε0 ωε0 ω(ωε02)

Table 41: AdmisLevOrdinal multiply examples
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α β αβ

ω1 ω1 ωω
(ω12)

ω1 ϕ3 ωω
ω1+ϕ3

ω1 ω1 + [[1]]ω3,1(1, 0, 1) ωω
(ω12)+ωω1+[[1]]ω3,1(1,0,1)

ω1 ω1,ω(ω, 1) ω1,ω(ω, 1)
ω1 ω1,ε0(ω, 1, 0) ω1,ε0(ω, 1, 0)
ω1 ωε0 ωε0
ϕ3 ω1 ω1

ϕ3 ϕ3 ωω
(ϕ32)

ϕ3 ω1 + [[1]]ω3,1(1, 0, 1) ωω1+[[1]]ω3,1(1,0,1)

ϕ3 ω1,ω(ω, 1) ω1,ω(ω, 1)
ϕ3 ω1,ε0(ω, 1, 0) ω1,ε0(ω, 1, 0)
ϕ3 ωε0 ωε0

ω1 + [[1]]ω3,1(1, 0, 1) ω1 ωω
(ω12)

ω1 + [[1]]ω3,1(1, 0, 1) ϕ3 ωω
ω1+ϕ3

ω1 + [[1]]ω3,1(1, 0, 1) ω1 + [[1]]ω3,1(1, 0, 1) ωω
(ω12)+ωω1+[[1]]ω3,1(1,0,1)

ω1 + [[1]]ω3,1(1, 0, 1) ω1,ω(ω, 1) ω1,ω(ω, 1)
ω1 + [[1]]ω3,1(1, 0, 1) ω1,ε0(ω, 1, 0) ω1,ε0(ω, 1, 0)
ω1 + [[1]]ω3,1(1, 0, 1) ωε0 ωε0

ω1,ω(ω, 1) ω1 ωω
ω1,ω(ω,1)+ω1

ω1,ω(ω, 1) ϕ3 ωω
ω1,ω(ω,1)+ϕ3

ω1,ω(ω, 1) ω1 + [[1]]ω3,1(1, 0, 1) ωω
ω1,ω(ω,1)+ω1+ωω1,ω(ω,1)+[[1]]ω3,1(1,0,1)

ω1,ω(ω, 1) ω1,ω(ω, 1) ωω
(ω1,ω(ω,1)2)

ω1,ω(ω, 1) ω1,ε0(ω, 1, 0) ω1,ε0(ω, 1, 0)
ω1,ω(ω, 1) ωε0 ωε0
ω1,ε0(ω, 1, 0) ω1 ωω

ω1,ε0
(ω,1,0)+ω1

ω1,ε0(ω, 1, 0) ϕ3 ωω
ω1,ε0

(ω,1,0)+ϕ3

ω1,ε0(ω, 1, 0) ω1 + [[1]]ω3,1(1, 0, 1) ωω
ω1,ε0

(ω,1,0)+ω1+ω
ω1,ε0

(ω,1,0)+[[1]]ω3,1(1,0,1)

ω1,ε0(ω, 1, 0) ω1,ω(ω, 1) ωω
ω1,ε0

(ω,1,0)+ω1,ω(ω,1)

ω1,ε0(ω, 1, 0) ω1,ε0(ω, 1, 0) ωω
(ω1,ε0

(ω,1,0)2)

ω1,ε0(ω, 1, 0) ωε0 ωε0
ωε0 ω1 ωω

ωε0+ω1

ωε0 ϕ3 ωω
ωε0+ϕ3

ωε0 ω1 + [[1]]ω3,1(1, 0, 1) ωω
ωε0+ω1+ωωε0+[[1]]ω3,1(1,0,1)

ωε0 ω1,ω(ω, 1) ωω
ωε0+ω1,ω(ω,1)

ωε0 ω1,ε0(ω, 1, 0) ωω
ωε0+ω1,ε0

(ω,1,0)

ωε0 ωε0 ωω
(ωε02)

Table 42: AdmisLevOrdinal exponential examples
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proved that any formal system that meets certain minimal requirements must be incomplete,
because it can always be expanded by consistently adding more real numbers to it. This can
be done, from outside the system, by a Cantor diagonalization of the reals definable within
the system.

Because of mathematics’ inherent incompleteness, it can always be expanded. Thus it is
consistent but, I suspect, incorrect to reason as if completed infinite totalities exist. This
does not mean that an algebra of infinities or infinitesimals is not useful. As long as they
get the same results is reasoning about the potentially infinite they may be of significant
practical value.

The names of all the reals provably definable in any finite (or recursively enumerable)
formal system must be recursively enumerable, as Löwenheim and Skolem observed in the
theorem that bears their names. Thus one can consistently assume the reals in a consistent
formal system that meets other requirements form a completed totality, albeit one that is not
recursively enumerable within the system.

The current philosophical approach to mathematical truth has been enormously success-
ful. This is the most powerful argument in support of it. However, I believe the approach,
that was so successful in the past, is increasingly becoming a major obstacle to mathematical
progress. If mathematics is about completed infinite totalities, then computer technology is
of limited value in expanding the foundations. For computers are restricted to finite opera-
tions in contrast to the supposed human ability to transcend the finite through pure thought
and mathematical intuition. Thus the foundations of mathematics is perhaps the only major
scientific field where computers are not an essential tool for research. An ultimate goal of
this research is to help to change that perspective and the practical reality of foundations
research in mathematics.

Since all ordinals beyond the integers are infinite they do not correspond to anything in
the physical world. Our idea of all integers comes from the idea that we can define what an
integer is. The property of being an integer leads to the idea that there is a set of all objects
satisfying the property. An alternative way to think of the integers is computationally.
We can write a computer program that can in theory output every integer. Of course
real programs do not run forever, error free, but that does not mean that such potentially
infinite operations as a computer running forever lack physical significance. Our universe
appears to be extraordinarily large, but finite. However, it might be potentially infinite.
Cosmology is of necessity a speculative science. Thus the idea of a potentially infinite set of
all integers, in contrast to that of completed infinite totalities, might have objective meaning
in physical reality. Most of standard mathematics has an interpretation in an always finite
but potentially infinite universe, but some questions, such as the continuum hypothesis do
not. This meshes with increasing skepticism about whether the continuum hypothesis and
other similar foundations questions are objectively true or false as Solomon Feferman and
others have suggested[5].
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A Command line interface

This appendix is a stand alone manual for a command line interface to most of the capabilities
described in this document.

A.1 Introduction

The Ordinal Calculator is an interactive tool for understanding the hierarchies of recursive
and countable ordinals[15, 11, 6]. It is also a research tool to help to expand these hierar-
chies. Its motivating goal is ultimately to expand the foundations of mathematics by using
computer technology to manage the combinatorial explosion in complexity that comes with
explicitly defining the recursive ordinals implicitly defined by the axioms of Zermelo-Frankel
set theory[4, 2]. The underlying philosophy focuses on what formal systems tell us about
physically realizable combinatorial processes[3].

The source code and documentation is licensed for use and and distribution under the Gnu
General Public License, Version 2, June 1991. A copy of this license must be distributed
with the program. It is also at: http://www.gnu.org/licenses/gpl-2.0.html. The ordi-
nal calculator source code, documentation and some executables can be downloaded from:
http://www.mtnmath.com/ord or https://sourceforge.net/projects/ord.

Most of this manual is automatically extracted from the online documentation.

This is a command line interactive interface to a program for exploring the ordinals. It sup-
ports recursive ordinals up to and beyond the the Bachmann-Howard ordinal[8]. It defines
notations for the Church-Kleene ordinal and some larger countable ordinals. We refer to
these as admissible level ordinals. They are used in a form of ordinal collapsing to define
large recursive ordinals.

A.2 Command line options

The standard name for the ordinal calculator is ord. Typing ord (or ./ord) ENTER will
start ord in command line mode on most Unix or Linux based systems. The other command
line options are mostly for validating or documenting ord. They are:

‘cmd’ — Read specified command file and enter command line mode.
‘version’ — Print program version.
‘help’ — Describe command line options.
‘cmdDoc’ — Write manual for command line mode in TeX format.
‘tex’ — Output TeX documentation files.
‘psi’ — Do tests of Veblen hierarchy.
‘base’ — Do tests of base class Ordinal.
‘try’ — Do tests of class FiniteFuncOrdinal.
‘iter’ — Do tests of class IterFuncOrdinal.
‘admis’ — Do tests of class AdmisLevOrdinal.
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‘admis2’ — Do additional tests of class AdmisLevOrdinal.
‘play’ — Do integrating tests.
‘descend’ — Test descending trees.
‘collapse’ — Ordinal collapsing tests.
‘nested’ — Ordinal nested collapsing tests.
‘nested2’ — Ordinal nested collapsing tests 2.
‘nested3’ — Ordinal nested collapsing tests 3.
‘exitCode’ — LimitElement exit code base test.
‘exitCode2’ — LimitElement exit code base test 2.
‘limitEltExitCode’ — Admissible level LimitElement exit code test 0.
‘limitEltExitCode1’ — Admissible level limitElement exit code test 1.
‘limitEltExitCode2’ — Admissible level limitElement exit code test 2.
‘limitEltExitCode3’ — Admissible level limitElement exit code test 3.
‘limitOrdExitCode’ — Admissible level limitOrd exit code test.
‘limitOrdExitCode1’ — Admissible level limitOrd exit code test.
‘limitOrdExitCode2’ — Admissible level limitOrd exit code test.
‘limitOrdExitCode3’ — Admissible level limitOrd exit code test.
‘transition’ — Admissible level transition test.
‘cmpExitCode’ — Admissible level compare exit code test.
‘drillDownExitCode’ — Admissible level compare exit code test.
‘embedExitCode’ — Admissible level compare exit code test.
‘fixedPoint’ — test fixed point detection.
‘helpTex’ — TeX document command line options.

A.3 Help topics

Following are topics you can get more information about by entering ‘help topic’.

‘cmds’ – lists commands.
‘defined’ – list predefined ordinal variables.
‘compare’ – describes comparison operators.
‘members’ – describes member functions.
‘ordinal’ – describes available ordinal notations.
‘ordlist’ – describes ordinal lists and their use.
‘purpose’ – describes the purpose and philosophy of this project.
‘syntax’ – describes syntax.
‘version’ – displays program version.

This program supports GNU ‘readline’ input line editing.
You can download the program and documentation at: Mountain Math Software or at
SourceForge.net (http://www.mtnmath.com/ord or https://sourceforge.net/projects/ord).
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A.4 Ordinals

Ordinals are displayed in TeX and plain text format. (Enter ‘help opts’ to control this.)
The finite ordinals are the nonnegative integers. The ordinal operators are +, * and ^ for
addition, multiplication and exponentiation. Exponentiation has the highest precedence.
Parenthesis can be used to group subexpressions.

The ordinal of the integers, omega, is represented by the single lowercase letter: ‘w’. The
Veblen function is specified as ’psi(p1,p2,...,pn)’ where n is any integer > 0. Special
notations are displayed in some cases. Specifically psi(x) is displayed as w^x. psi(1,x) is
displayed as epsilon(x). psi(1,x,0) is displayed as gamma(x). In all cases the displayed
version can be used as input.

Larger ordinals are specified as psi {px}(p1,p2,...,pn). The first parameter is enclosed
in brackets not parenthesis. psi {1} is defined as the union of w, epsilon(0), gamma(0),

psi(1, 0, 0, 0), psi(1, 0, 0, 0, 0), psi(1, 0, 0, 0, 0, 0), psi(1, 0, 0, 0, 0,

0, 0), ... You can access the sequence whose union is a specific ordinal using member func-
tions. Type help members to learn more about this. Larger notations beyond the recursive
ordinals are also available in this implementation. See the documentation ‘A Computational
Approach to the Ordinal Numbers’ to learn about ‘Countable admissible ordinals‘.

There are several predefined ordinals. ’w’ and ’omega’ can be be used interchangeably for
the ordinal of the integers and in other contexts. ‘eps0’ and ’omega1CK’ are also predefined.
Type ‘help defined’ to learn more.

A.5 Predefined ordinals

The predefined ordinal variables are:
omega = ω
w = ω
omega1CK = ω1

w1 = ω1

w1CK = ω1

eps0 = ε0

A.6 Syntax

The syntax is that of restricted arithmetic expressions and assignment statements. The
tokens are variable names, nonnegative integers and the operators: +, * and ^ (addition,
multiplication and exponentiation). Comparison operators are also supported. Type ‘help
comparison’ to learn about them. The letter ’w‘ is predefined as omega, the ordinal of the
integers. Type ’help defined’ for a list of all predefined variables. To learn more about
ordinals type ‘help ordinal’. C++ style member functions are supported with a ’.’ sepa-
rating the variable name (or expression enclosed in parenthesis) from the member function
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name. Enter ’help members’ for the list of member functions.

An assignment statement or ordinal expression can be entered and it will be evaluated
and displayed in normal form. Typing ‘help opts’ lists the display options. Assignment
statements are stored. They can be listed (command ’list‘) and their value can be used in
subsequent expressions. All statements end at the end of a line unless the last character is
’\‘. Lines can be continued indefinitely. Comments must be preceded by either ’%’ or ’//’.

Commands can be entered as one or more names separated by white space. File names
should be enclosed in double quotes (") if they contain any non alphanumeric characters
such as dot, ‘.’. Command names can be used as variables. Enter ‘help cmds’ to get a list
of commands and their functions.

A.7 Ordinal lists

Lists are a sequence of ordinals. An assignment statement can name a single ordinal or a
list of them separated by commas. In most circumstances only the first element in the list
is used, but some functions (such as member function ‘limitOrdLst’) use the full list. Type
‘help members’ to learn more about ‘limitOrdLst’.

A.8 Commands

A.8.1 All commands

The following commands are available:
‘cmpCheck’ – toggle comparison checking for debugging.
‘examples’ – shows examples.
‘exit’ – exits the program.
‘exportTeX’ – exports assignments statements in TeX format.
‘help’ – displays information on various topics.
‘list’ – lists assignment statements.
‘log’ – writes a log file (ord.log default).
‘listTeX’ – lists assignment statements in TeX format.
‘logopt’ – controls the log file.
‘opts’ – controls display format and other options.
‘prompt’ – prompts for ENTER with optional string argument.
‘quit’ – exits the program.
‘read’ – read “input file” (ord calc.ord default).
‘readall’ – same as read but no ‘wait for ENTER’ prompt.
‘save’ – saves assignment statements to a file (ord calc.ord default).
‘setDbg’ – set debugging options.
‘yydebug’ – enables parser debugging (off option).
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A.8.2 Commands with options

Following are the commands with options.

Command ‘examples’ – shows examples.
It has one parameter with the following options.
‘arith’ – demonstrates ordinal arithmetic.
‘compare’ – shows compare examples.
‘display’ – shows how display options work.
‘member’ – demonstrates member functions.
‘VeblenFinite’ – demonstrates Veblen functions of a finite number of ordinals.
‘VeblenExtend’ – demonstrates Veblen functions iterated up to a recursive ordinal.
‘admissible’ – demonstrates countable admissible level ordinal notations.
‘admissibleDrillDown’ – demonstrates admissible notations dropping down one level.
‘admissibleContext’ – demonstrates admissible ordinal context parameters.
‘list’ – shows how lists work.
‘desLimitOrdLst’ – shows how to construct a list of descending trees.

Command ‘logopt’ – controls the log file.
It has one parameter with the following options.
‘flush’ – flush log file.
‘stop’ – stop logging.

Command ‘opts’ – controls display format and other options.
It has one parameter with the following options.
‘both’ – display ordinals in both plain text and TeX formats.
‘tex’ – display ordinals in TeX format only.
‘text’ – display ordinals in plain text format only (default).
‘psi’ – additionally display ordinals in Psi format (turned off by the above options).
‘promptLimit’ – lines to display before pausing, < 4 disables pause.

Command ‘setDbg’ – set debugging options.
It has one parameter with the following options.
‘all’ – turn on all debugging.
‘arith’ – debug ordinal arithmetic.
‘clear’ – turn off all debugging.
‘compare’ – debug compare.
‘exp’ – debug exponential.
‘limArith’ – limited debugging of arithmetic.
‘limit’ – debug limit element functions.
‘construct’ – debug constructors.
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A.9 Member functions

Every ordinal (except 0) is the union of smaller ordinals. Every limit ordinal is the union of
an infinite sequence of smaller ordinals. Member functions allow access to to these smaller
ordinals. One can specify how many elements of this sequence to display or get the value
of a specific instance of the sequence. For a limit ordinal, the sequence displayed, were it
extended to infinity and its union taken, that union would equal the original ordinal.

The syntax for a member function begins with either an ordinal name (from an assignment
statement) or an ordinal expression enclosed in parenthesis. This is followed by a dot (.) and
then the member function name and its parameters enclosed in parenthesis. The format is
‘ordinal name.memberFunction(p)’ where p may be optional. Functions ‘limitOrdLst’ and
‘desLimitOrdLst’ return a list all other member functions return a scalar value. Unless
specified otherwise, the returned value is that of the ordinal the function was called from.

The member functions are:

‘descend’ – (n,m) iteratively (up to m) take nth limit element.
‘descendFull’ – (n,m,k) iteratively (up to m) take n limit elements with root k.
‘getCompareIx’ – display admissible compare index.
‘limitElt’ – evaluates to specified finite limit element.
‘limitElement’ – an alias for ‘limitElt’.
‘listLimitElts’ – lists specified (default 10) limit elements.
‘listElts’ – alias for listLimitElts.
‘limitOrd’ – evaluates to specified (may be infinite) limit element.
‘limitType’ – return limitType.
‘limitOrdLst’ – apply each input from list to limitOrd and return that list.
‘desLimitOrdLst’ – (depth, list) does limitOrdLst iteratively on all outputs depth times.
‘maxLimitType’ – return maxLimitType.
‘maxParameter’ – return maxParameter (for debugging).

A.10 Comparison operators

Any two ordinals or ordinal expressions can be compared using the operators: <, <=, >,
>= and ==. The result of the comparison is the text either TRUE or FALSE. Comparison
operators have lower precedence than ordinal operators.

A.11 Examples

In the examples a line that begins with the standard prompt ‘ordCalc> ’ contains user input.
All other lines contain program output

To select an examples type ‘examples’ followed by one of the following options.
‘arith’ – demonstrates ordinal arithmetic.
‘compare’ – shows compare examples.
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‘display’ – shows how display options work.
‘member’ – demonstrates member functions.
‘VeblenFinite’ – demonstrates Veblen functions of a finite number of ordinals.
‘VeblenExtend’ – demonstrates Veblen functions iterated up to a recursive ordinal.
‘admissible’ – demonstrates countable admissible level ordinal notations.
‘admissibleDrillDown’ – demonstrates admissible notations dropping down one level.
‘admissibleContext’ – demonstrates admissible ordinal context parameters.
‘list’ – shows how lists work.
‘desLimitOrdLst’ – shows how to construct a list of descending trees.

A.11.1 Simple ordinal arithmetic

The following demonstrates ordinal arithmetic.

ordCalc> a=w^w

Assigning ( w^w ) to ‘a’.

ordCalc> b=w*w

Assigning ( w^2 ) to ‘b’.

ordCalc> c=a+b

Assigning ( w^w ) + ( w^2 ) to ‘c’.

ordCalc> d=b+a

Assigning ( w^w ) to ‘d’.

A.11.2 Comparison operators

The following shows compare examples.

ordCalc> psi(1,0,0) == gamma(0)

TRUE

ordCalc> psi(1,w) == epsilon(w)

TRUE

ordCalc> w^w < psi(1)

FALSE

ordCalc> psi(1)

Normal form: w

A.11.3 Display options

The following shows how display options work.

ordCalc> a=w^(w^w)

Assigning ( w^( w^w ) ) to ‘a’.

ordCalc> b=epsilon(a)
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Assigning epsilon( ( w^( w^w ) )) to ‘b’.

ordCalc> c=gamma(b)

Assigning gamma( epsilon( ( w^( w^w ) )) ) to ‘c’.

ordCalc> list

a = ( w^( w^w ) )

b = epsilon( ( w^( w^w ) ))

c = gamma( epsilon( ( w^( w^w ) )) )

ordCalc> opts tex

ordCalc> list

a = \omega{}^{\omega{}^{\omega{}}}
b = \varepsilon {\omega{}^{\omega{}^{\omega{}}}}
c = \varphi( \varepsilon {\omega{}^{\omega{}^{\omega{}}}}, 0, 0)

ordCalc> opts both

ordCalc> list

a = ( w^( w^w ) )

a = \omega{}^{\omega{}^{\omega{}}}
b = epsilon( ( w^( w^w ) ))

b = \varepsilon {\omega{}^{\omega{}^{\omega{}}}}
c = gamma( epsilon( ( w^( w^w ) )) )

c = \varphi( \varepsilon {\omega{}^{\omega{}^{\omega{}}}}, 0, 0)

A.11.4 Member functions

The following demonstrates member functions.

ordCalc> a=psi(1,0,0,0,0)

Assigning psi( 1, 0, 0, 0, 0 ) to ‘a’.

ordCalc> a.listElts(3)

3 limitElements for psi( 1, 0, 0, 0, 0 )

le(1) = psi( 1, 0, 0, 0 )

le(2) = psi( psi( 1, 0, 0, 0 ) + 1, 0, 0, 0 )

le(3) = psi( psi( psi( 1, 0, 0, 0 ) + 1, 0, 0, 0 ) + 1, 0, 0, 0 )

End limitElements

Normal form: psi( 1, 0, 0, 0, 0 )

ordCalc> b=a.limitElt(6)

Assigning psi( psi( psi( psi( psi( psi( 1, 0, 0, 0 ) + 1, 0, 0, 0 ) + 1, 0, 0,

0 ) + 1, 0, 0, 0 ) + 1, 0, 0, 0 ) + 1, 0, 0, 0 ) to ‘b’.

A.11.5 Veblen function of N ordinals

The following demonstrates Veblen functions of a finite number of ordinals.
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The Veblen function with a finite number of parameters, psi(x1,x2,...xn) is built up from
the function omega^x. psi(x) = omega^x. psi(1,x) enumerates the fixed points of omega^x.
This is epsilon(x). Each additional variable diagonalizes the functions definable with existing
variables. These functions can have any finite number of parameters.

ordCalc> a=psi(w,w)

Assigning psi( w, w ) to ‘a’.

ordCalc> b=psi(a,3,1)

Assigning psi( psi( w, w ), 3, 1 ) to ‘b’.

ordCalc> b.listElts(3)

3 limitElements for psi( psi( w, w ), 3, 1 )

le(1) = psi( psi( w, w ), 3, 0 ) + 1

le(2) = psi( psi( w, w ), 2, psi( psi( w, w ), 3, 0 ) + 1 )

le(3) = psi( psi( w, w ), 2, psi( psi( w, w ), 2, psi( psi( w, w ), 3, 0 ) + 1

) + 1 )

End limitElements

Normal form: psi( psi( w, w ), 3, 1 )

ordCalc> c=psi(a,a,b,1,3)

Assigning psi( psi( w, w ), psi( w, w ), psi( psi( w, w ), 3, 1 ), 1, 3 ) to ‘c’.

ordCalc> c.listElts(3)

3 limitElements for psi( psi( w, w ), psi( w, w ), psi( psi( w, w ), 3, 1 ), 1,

3 )

le(1) = psi( psi( w, w ), psi( w, w ), psi( psi( w, w ), 3, 1 ), 1, 2 ) + 1

le(2) = psi( psi( w, w ), psi( w, w ), psi( psi( w, w ), 3, 1 ), 0, psi( psi(

w, w ), psi( w, w ), psi( psi( w, w ), 3, 1 ), 1, 2 ) + 1 )

le(3) = psi( psi( w, w ), psi( w, w ), psi( psi( w, w ), 3, 1 ), 0, psi( psi(

w, w ), psi( w, w ), psi( psi( w, w ), 3, 1 ), 0, psi( psi( w, w ), psi( w, w

), psi( psi( w, w ), 3, 1 ), 1, 2 ) + 1 ) + 1 )

End limitElements

Normal form: psi( psi( w, w ), psi( w, w ), psi( psi( w, w ), 3, 1 ), 1, 3 )

A.11.6 Extended Veblen function

The following demonstrates Veblen functions iterated up to a recursive ordinal.

The extended Veblen function, psi {a}(x1,x2,...,xn), iterates the idea of the Veblen function
up to any recursive ordinal. The first parameter is the recursive ordinal of this iteration.

ordCalc> a=psi {1}(1)
Assigning psi { 1}(1) to ‘a’.

ordCalc> a.listElts(4)
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4 limitElements for psi { 1}(1)
le(1) = ( w^( psi { 1} + 1 ) )

le(2) = psi( psi { 1} + 1, 0 )

le(3) = gamma( psi { 1} + 1 )

le(4) = psi( psi { 1} + 1, 0, 0, 0 )

End limitElements

Normal form: psi { 1}(1)
ordCalc> b=psi {w+1}(3)
Assigning psi { w + 1}(3) to ‘b’.

ordCalc> b.listElts(4)

4 limitElements for psi { w + 1}(3)
le(1) = psi { w}(psi { w + 1}(2) + 1)

le(2) = psi { w}(psi { w + 1}(2) + 1, 0)

le(3) = psi { w}(psi { w + 1}(2) + 1, 0, 0)

le(4) = psi { w}(psi { w + 1}(2) + 1, 0, 0, 0)

End limitElements

Normal form: psi { w + 1}(3)

A.11.7 Admissible countable ordinal notations

The following demonstrates countable admissible level ordinal notations.

Countable admissible level notations, omega {k,g}(x1,x3,..,xn) extend the idea of recursive
notation to larger countable ordinals. The first parameter is the admissible level. omega {1}
is the Church-Kleene ordinal. The remaining parameters are similar to those defined for
smaller ordinal notations.

ordCalc> a=w {1}(1)
Assigning omega { 1}(1) to ‘a’.

ordCalc> a.listElts(4)

4 limitElements for omega { 1}(1)
le(1) = psi { omega { 1} + 1}
le(2) = psi { psi { omega { 1} + 1} + 1}
le(3) = psi { psi { psi { omega { 1} + 1} + 1} + 1}
le(4) = psi { psi { psi { psi { omega { 1} + 1} + 1} + 1} + 1}
End limitElements

Normal form: omega { 1}(1)
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A.11.8 Admissible notations drop down parameter

The following demonstrates admissible notations dropping down one level.

Admissible level ordinals have the a limit sequence defined in terms of lower levels. The
lowest admissible level is that of recursive ordinals. To implement this definition of limit
sequence, a trailing parameter in square brackets is used. This parameter (if present) defines
an ordinal at one admissible level lower than indicated by other parameters.

ordCalc> a=w {1}[1]
Assigning omega { 1}[ 1] to ‘a’.

ordCalc> a.listElts(4)

4 limitElements for omega { 1}[ 1]

le(1) = w

le(2) = psi { w}
le(3) = psi { psi { w} + 1}
le(4) = psi { psi { psi { w} + 1} + 1}
End limitElements

Normal form: omega { 1}[ 1]

ordCalc> b=w {1}
Assigning omega { 1} to ‘b’.

ordCalc> c=b.limitOrd(w^3)

Assigning omega { 1}[ ( w^3 )] to ‘c’.

ordCalc> c.listElts(4)

4 limitElements for omega { 1}[ ( w^3 )]

le(1) = omega { 1}[ ( w^2 )]

le(2) = omega { 1}[ (( w^2 )*2 )]

le(3) = omega { 1}[ (( w^2 )*3 )]

le(4) = omega { 1}[ (( w^2 )*4 )]

End limitElements

Normal form: omega { 1}[ ( w^3 )]

ordCalc> d=w {5,c}(3,0)
Assigning omega { 5, omega { 1}[ ( w^3 )]}(3, 0) to ‘d’.

ordCalc> d.listElts(4)

4 limitElements for omega { 5, omega { 1}[ ( w^3 )]}(3, 0)

le(1) = omega { 5, omega { 1}[ ( w^3 )]}(2, 1)

le(2) = omega { 5, omega { 1}[ ( w^3 )]}(2, omega { 5, omega { 1}[ ( w^3 )]}(2,
1) + 1)

le(3) = omega { 5, omega { 1}[ ( w^3 )]}(2, omega { 5, omega { 1}[ ( w^3 )]}(2,
omega { 5, omega { 1}[ ( w^3 )]}(2, 1) + 1) + 1)
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le(4) = omega { 5, omega { 1}[ ( w^3 )]}(2, omega { 5, omega { 1}[ ( w^3 )]}(2,
omega { 5, omega { 1}[ ( w^3 )]}(2, omega { 5, omega { 1}[ ( w^3 )]}(2, 1) + 1)

+ 1) + 1)

End limitElements

Normal form: omega { 5, omega { 1}[ ( w^3 )]}(3, 0)

A.11.9 Admissible notations context parameter

The following demonstrates admissible ordinal context parameters.

The context parameter in admissible level ordinals allows one to use any notation at any ad-
missible level to define notations at any lower admissible level or to define recursive ordinals.

ordCalc> a=[[1]]w {1}
Assigning [[1]]omega { 1} to ‘a’.

ordCalc> a.listElts(4)

4 limitElements for [[1]]omega { 1}
le(1) = omega { 1}[ w]

le(2) = omega { 1}[ omega { 1}[ w]]

le(3) = omega { 1}[ omega { 1}[ omega { 1}[ w]]]

le(4) = omega { 1}[ omega { 1}[ omega { 1}[ omega { 1}[ w]]]]

End limitElements

Normal form: [[1]]omega { 1}

A.11.10 Lists of ordinals

The following shows how lists work.

Lists are a sequence of ordinals (including integers). A list can be assigned to a variable just
as a single ordinal can be. In most circumstances lists are evaluated as the first ordinal in
the list. In ‘limitOrdLst’ all of the list entries are used. These member functions return a
list with an input list

ordCalc> lst = 1, 12, w, gamma(w^w), w1

Assigning 1, 12, w, gamma( ( w^w ) ), omega { 1} to ‘lst’.

ordCalc> a=w1.limitOrdLst(lst)

( omega { 1} ).limitOrd( 12 ) = omega { 1}[ 12]

( omega { 1} ).limitOrd( w ) = omega { 1}[ w]

( omega { 1} ).limitOrd( gamma( ( w^w ) ) ) = omega { 1}[ gamma( ( w^w ) )]

Assigning omega { 1}[ 12], omega { 1}[ w], omega { 1}[ gamma( ( w^w ) )] to ‘a’.

ordCalc> bg = w {w+33}

79



Assigning omega { w + 33} to ‘bg’.

ordCalc> c=bg.limitOrdLst(lst)

( omega { w + 33} ).limitOrd( 12 ) = omega { w + 33}[ 12]

( omega { w + 33} ).limitOrd( w ) = omega { w + 33}[ w]

( omega { w + 33} ).limitOrd( gamma( ( w^w ) ) ) = omega { w + 33}[ gamma( ( w^w

) )]

( omega { w + 33} ).limitOrd( omega { 1} ) = omega { w + 33}[ omega { 1}]
Assigning omega { w + 33}[ 12], omega { w + 33}[ w], omega { w + 33}[ gamma( (

w^w ) )], omega { w + 33}[ omega { 1}] to ‘c’.

A.11.11 List of descending trees

The following shows how to construct a list of descending trees.

‘desLimitOrdLst’ iterates ’limitOrdLst’ to a specified ‘depth’. The first parameter is the
integer depth of iteration and the second is the list of parameters to be used. This routine
first takes‘limitOrd’ of each element in the second parameter creating a list of outputs. It
then takes this list and evaluates ‘limitOrd’ for each of these values at each entry in the
original parameter list. All of these results are combined in a new list and the process is
iterated ‘depth’ times. The number of results grows exponentially with ‘depth’.

ordCalc> lst = 1, 5, w, psi(2,3)

Assigning 1, 5, w, psi( 2, 3 ) to ‘lst’.

ordCalc> bg = w {3}
Assigning omega { 3} to ‘bg’.

ordCalc> d= bg.desLimitOrdLst(2,lst)

( omega { 3} ).limitOrd( 1 ) = omega { 3}[ 1]

( omega { 3} ).limitOrd( 5 ) = omega { 3}[ 5]

( omega { 3} ).limitOrd( w ) = omega { 3}[ w]

( omega { 3} ).limitOrd( psi( 2, 3 ) ) = omega { 3}[ psi( 2, 3 )]

Descending to 1 for omega { 3}
( omega { 3}[ 1] ).limitOrd( 1 ) = omega { 2}
( omega { 3}[ 1] ).limitOrd( 5 ) = omega { 2, omega { 2, omega { 2, omega { 2,

omega { 2} + 1} + 1} + 1} + 1}
( omega { 3}[ 5] ).limitOrd( 1 ) = omega { 3}[ 4]

( omega { 3}[ 5] ).limitOrd( 5 ) = omega { 2, omega { 2, omega { 2, omega { 2,

omega { 3}[ 4] + 1} + 1} + 1} + 1}
( omega { 3}[ w] ).limitOrd( 1 ) = omega { 3}[ 1]

( omega { 3}[ w] ).limitOrd( 5 ) = omega { 3}[ 5]

( omega { 3}[ psi( 2, 3 )] ).limitOrd( 1 ) = omega { 3}[ psi( 2, 2 ) + 1]

( omega { 3}[ psi( 2, 3 )] ).limitOrd( 5 ) = omega { 3}[ epsilon( epsilon( epsilon(

epsilon( psi( 2, 2 ) + 1) + 1) + 1) + 1)]

Assigning omega { 3}[ 1], omega { 3}[ 5], omega { 3}[ w], omega { 3}[ psi( 2, 3

)], omega { 2}, omega { 2, omega { 2, omega { 2, omega { 2, omega { 2} + 1} + 1}
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+ 1} + 1}, omega { 3}[ 4], omega { 2, omega { 2, omega { 2, omega { 2, omega { 3}[
4] + 1} + 1} + 1} + 1}, omega { 3}[ 1], omega { 3}[ 5], omega { 3}[ psi( 2, 2 )

+ 1], omega { 3}[ epsilon( epsilon( epsilon( epsilon( psi( 2, 2 ) + 1) + 1) +

1) + 1)] to ‘d’.
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