
The SKaMPI 5 manual

Werner Augustin and Thomas Worsch

April 16, 2008

1

Contents

1 Introduction 3

1.1 Overview . 3
1.2 Warnings . 3

2 Usage of SKaMPI 5 4

2.1 The basic structure . 4
2.2 Scope of SKaMPI 5 . 5
2.3 Command line arguments for SKaMPI . 5
2.4 Input and output file names . 5
2.5 Basics of run-time configuration . 5
2.6 Building SKaMPI 5 . 7

3 All SKaMPI 5 measurement functions 9

3.1 Measurements of point to point communication . 9
3.2 Measurements of collective communication . 10
3.3 Measurements of one-sided communication . 11
3.4 Miscellaneous measurements . 14

4 SKaMPI 5 helper functions and iterators 14

4.1 Helper functions . 14
4.2 Iterators . 16

5 Syntax and semantics of SKaMPI 5 input files 16

5.1 Data types . 16
5.2 Predefined Constants . 16
5.3 Control structures . 17

5.3.1 Loops . 17
5.3.2 Conditional statements . 18
5.3.3 Measurement statements . 18

6 Extending SKaMPI 5 18

6.1 Buffer handling . 19
6.2 Writing a new measurement function . 20

6.2.1 Doing synchronized measurements . 20
6.2.2 Functions available inside measure_ functions 21

6.3 Writing a new iterator . 22
6.4 Writing a new helper function . 23
6.5 Building an extended version of SKaMPI . 23

7 Miscellaneous 24

7.1 Format of output file . 24
7.2 Preparing diagrams from SKaMPI output files . 25
7.3 Our TODO list . 26

8 Pitfalls of benchmarking 26

2

9 Acknowledgements 26

3

1 Introduction

SKaMPI 5 is a benchmark for MPI implementations. If you don’t know what MPI is, this software
is not for you. But you may want to go to http://www.mpi-forum.org to find out more.

If you only want a very short introduction at the moment, have a look at the accompanying
documentation entitled “SKaMPI 5 for the impatient” which you may find in the file surprisingly
named impatient.ps.

If you only want a short introduction at the moment, read Section 2 (and maybe have a look
at the C files in the subdirectory measurements).

Please read the warnings in Section 1.2.

1.1 Overview

The remainder of this manual is subdivided into the following sections:

Section 2: We start with a description of the basic structure of SKaMPI 5 and its usage.

Section 3: There you can find the complete list of all measurements that can be performed by the
current version of SKaMPI 5.

Section 4: There you can find the complete list of all builtin helper functions and iterators in
SKaMPI.

Section 5: There you can find the detailed syntax for SKaMPI 5 input files and what the syntactic
constructs mean to the interpreter inside SKaMPI.

Section 6: This is for you in case you are missing some functionality in Section 3 or Section 4:
SKaMPI 5 is a complete rewrite. Its major advantage over previous releases is its easy ex-
tendibility. In Section 6 you will find everything you need to know for writing your own pieces
of benchmarking code to be used by SKaMPI 5.

Section 7: Here we have collected pieces of information which did not fit well into the previous
sections.

Section 8: Some remarks on general problems with benchmarking MPI libraries.

1.2 Warnings

Please keep the following in mind when using SKaMPI:

• We have no experience with SKaMPI running on machines with many processors. We are
aware of the following potential scalability problem:

– If your MPI library does not provide synchronous clocks, i.e. MPI_WTIME_IS_GLOBAL is
false, the “time management” of SKaMPI may use too much time of its own on large
machines.

• If you are running SKaMPI with really many processes you should be very careful calling
set_max_nr_node_times with the size of MPI_COMM_WORLD as argument.

4

SKaMPI

source files

building SKaMPI with

make

SKaMPI

binary

SKaMPI

input file

running SKaMPI with

mpiexec or mpirun

SKaMPI

output file

Figure 1: How SKaMPI is used. (See Section 6 for a more detailed view.)

• Be careful that you might have measurements which take so little time (e.g. pingpongs on
really fast interconnects) that the overhead of the calls of MPI_Wtime is significant. In that
case increase the iterations parameter for the pingpong measurements.

• This documentation is usable, but not perfect.

• The contents of the default .ski files coming with SKaMPI may change in forthcoming releases.

• The names of measurement and helper functions may change in the future. We will try to
minimize these changes.

Please let us know any positive or negative experiences, so that we can improve SKaMPI.

2 Usage of SKaMPI 5

2.1 The basic structure

Figure 1 shows you the relations between several (sets of) files. You will usually compile the SKaMPI

source files only once (unless you are extending SKaMPI with your own measurement functions; see
Section 6). That will give you the SKaMPI binary, called skampi by default. (See Section 2.6 for
more details about building SKaMPI 5.)

The resulting binary is an MPI application which you will then probably run repeatedly us-
ing different input files, different numbers of processors and/or on different hardware platforms.
Depending on your parallel environment this may be achieved using a command line like

mpiexec -n 7 skampi -i coll.ski -o foo.sko

The SKaMPI 5 binary offers a lot of functions for benchmarking different aspects of an MPI
library. The input file contains the set of measurements and their corresponding parameters which
should be used for a specific execution of SKaMPI.

5

In Subsection 2.2 we give a quick overview of what parts of an MPI implementation can be
benchmarked with the present version of SKaMPI 5.

In Subsection 2.3 all command line arguments for SKaMPI 5 will be explained. In Subsection 2.4
you will find informations about how the default input and output file names for SKaMPI 5 are
constructed.

Subsection 2.5 will show you the basics of how to specify a sequence of measurements in a
SKaMPI 5 input file.

2.2 Scope of SKaMPI 5

The present version of SKaMPI 5 allows you to do measurements of (two-sided) point to point
communication, collective communication operations and a few other functions. If your MPI imple-
mentation supports it, one-sided communication can be benchmarked, too. In Section 3 we provide
the complete lists of all measurements currently possible.

There are also measurements for MPIIO, but they are not yet documented.
Virtual topologies and derived data types are two aspects of MPI which were covered by SKaMPI

4. Please note, that they are not yet supported by SKaMPI 5, but we plan to add those back, of
course.

2.3 Command line arguments for SKaMPI

SKaMPI 5 understands a number of command line arguments.

-h display a short help message similar to
this table and exit immediately

-i 〈infile〉 specify the name of the input file
-o 〈outfile〉 specify the name of the output file
-n perform a syntax check of the input file

but don’t run any measurements
-s include the contents of the ski file in the sko file
-d 〈flags〉 for debugging purposes of the SKaMPI 5 developers

2.4 Input and output file names

If an input file name is explicitly specified on the command line, the configuration for the SKaMPI

5 run is taken from that file. Otherwise the default file name skampi.ski is used.
If an output file name is explicitly specified on the command line, SKaMPI 5 will write all of its

results to that file. Otherwise the results are written to standard out.

2.5 Basics of run-time configuration

A SKaMPI 5 input file roughly looks like a program written in a special purpose (namely for
benchmarking) imperative programming language. When SKaMPI 5 is started, for each process an
interpreter reads the input file, parses it and takes the appropriate actions, i.e. it uses the SPMD
(single program multiple data) execution modell already well-known from MPI applications.

You have

6

• variables
• function calls. It is important to distinguish two types of functions:

measurement functions: Only these can be used in so-called measure statements and ac-
tually perform a measurement.

helper functions: These are all the other functions. They must not be used in so-called
measure statements. They may have side effects (e.g. setting the size of send and receive
buffers) and/or a return value (e.g. a communicator of a requested size)

• expressions
• data types: integer, double, string, MPI_Comm, MPI_Datatype, MPI_Op and MPI_Info

• control structures:

– if 〈cond〉 then 〈then-part〉 [else 〈else-part〉] fi
– for 〈loop spec〉 do 〈loop body〉 od

• measure statements, which have to be put into measurement blocks
• comments, which can be started anywhere on any line by the # character and extend to the

end of the line.

Here is a simple example input file for SKaMPI 5, broken up into a few segments, each followed by
some comments. The first thing you will notice: Do not put a semicolon at the end of a statement;
and do not put several statements in one line.

1 set_min_repetitions(8)

2 set_max_repetitions(20)

3 set_max_relative_standard_error(0.03)

In lines 1–3 three functions are called which set some global parameters for the following measure-
ments. In Subsection 5.3.3 we will describe these features in more detail.

4 set_skampi_buffer(128kb)

SKaMPI 5 provides two buffers for each process, which are called the send buffer and the receive
buffer. In line 4 SKaMPI 5 is told to allocate a total of 128 kbytes for these buffers. The exact
description of how this memory is used for the buffers is too long for this short introduction. Please
see Subsection 6.1 for all details.

5 comm_pt2pt = comm2_max_latency_with_root()

In line 5 a communicator is stored in the variable comm_pt2pt. It is determined by the builtin
function comm2_max_latency_with_root() which tries to find a process whose latency for point-
to-point communications with process 0 of MPI_COMM_WORLD is maximum among all processes.

Finally, here is a typical specification of a measurement block:

6 begin measurement "MPI_Send-MPI_Recv"

7 for count = 1 to ... step *sqrt(2) do

8 measure comm_pt2pt Pingpong_Send_Recv(count, MPI_INT, 0, 42)

9 od

10 end measurement

A measurement block has to be started with a line of the form

7

begin measurement "〈name〉"

and it has to be finished by a line

end measurement

where the 〈name〉 may be any string not containing a double quote character ". The 〈name〉 should
be informative (for your own happiness). Between these lines some actual measurement(s) should
be requested. The basic syntax is

measure 〈communicator〉 : 〈measurement function with args〉

The 〈measurement function〉 will carry out its measurements in the specified 〈communicator〉. In
line 8 above you can see, that obviously Pingpong_Send_Recv() is a measurement function (which
does a typical pingpong measurement using MPI_Send and MPI_Recv). For the complete list of all
such functions with their parameters see Section 3. Pingpong_Send_Recv expects 4 parameters: a
number of data elements to be sent forth and back, the MPI datatype of a single element, a message
tag and the number of iterations of one pingpong. In the example, MPI_INT is chosen as the fixed
datatype, 0 as the fixed tag and 42 pingpongs are requested. The number of elements is in count,
and it is varied inside a loop.

In line 7 you see that its initial value is 1. The upper bound for the last value is not specified
explicitly (which it could be). Instead there are three dots ... which are interpreted as follows: The
loops ends when for the first time the value of count is such that at least one of the processes which
are involved in the measurement would need more memory than allocated via the set_skampi_

buffer call. Thus, if you change the value in line 4 to say 1MB, more measurements (for larger
message sizes) will be done without any change to the measurement loop.

The “increment” for the loop variable is specified as *sqrt(2). This means that after each
measurement, it is updated by the assignment

count = count * sqrt(2)

followed by some rounding to an integer. But you don’t have think about the rounding yourself,
SKaMPI does that for you. More precisely, the first numbers without rounding are 1.0, 1.4 . . .,
2.0 . . ., etc. After rounding one gets 1, 1 once again, 2 and so on. SKaMPI 5 is smart enough to
drop the second 1.

For all the details of the correct syntax for SKaMPI input files please see Section 5.
For the list of all builtin helper functions (like sqrt() above) in SKaMPI see Section 4.

2.6 Building SKaMPI 5

The sources for SKaMPI 5 are provided in a single gzipped tar file, the name of which has one of
the following forms:

• skampi-5.〈x 〉.〈y〉.tar.gz

• skampi-5.〈x 〉.〈y〉-r〈rev〉.tar.gz

If you only want to use SKaMPI 5, you just have to compile it once. If you got a file named
skampi-5.〈x 〉.〈y〉.tar.gz the following simple steps should do the job:

8

1. tar zxf skampi-5.〈x 〉.〈y 〉.tar.gz

2. cd skampi-5.〈x 〉.〈y 〉

3. make

In the case of a file named skampi-5.〈x 〉.〈y〉-r〈rev〉.tar.gz you can proceed ananlogously.
If make succeeds you should have the executable called skampi. Start it as any other application

using MPI (see Sections 2.1 and 2.3 above).

1. Unpacking: You should have received SKaMPI 5 in a gzipped tar file whose name looks like
〈skampidir〉.tar.gz where 〈skampidir〉 is either skampi-5.〈x 〉.〈y〉 or skampi-5.〈x 〉.〈y〉-r〈rev〉.
With GNU tar you can unpack the archive using

tar zxf 〈skampidir 〉.tar.gz

If your version of tar cannot handle .gz file, use

gzip -cd 〈dirname〉.tar.gz | tar xf -

or

zcat skampi-5.〈x 〉.〈y 〉.tar.gz | tar xf -

After unpacking you should have a directory skampi-5.〈x 〉.〈y 〉 or skampi-5.〈x 〉.〈y 〉-r〈rev 〉
containing the C source files, example input files and the documentation for SKaMPI 5.

2. Compilation should in many cases be as simple as

cd 〈skampidir 〉; make

This works if the value mpicc of the variable MPICC in Makefile is correct for your installation.
If you have to use a different program for compiling MPI sources, please change it.

Concerning measurements for one-sided communication the situation is as follows: If your
MPI library claims that it implements the full MPI-2 standard, one-sided measurements are
compiled into SKaMPI. Otherwise, if you know that your MPI implementation does provide
one-sided communication, you may define USE_ONESIDED to have one-sided measurements
compiled into SKaMPI, i.e. you should add -DUSE_ONESIDED to the make variable CFLAGS.

Concerning measurements for MPI-IO the situation is similar: If your MPI library claims that
it implements the full MPI-2 standard, measurements for MPI-IO are compiled into SKaMPI.
Otherwise, if you know that your MPI implementation does provide MPI-IO, you may define
USE_MPI_IO to have the corresponding measurements compiled into SKaMPI, i.e. you should
add -DUSE_MPI_IO to the make variable CFLAGS.

3. Installation: There is no make install. Just use the SKaMPI 5 binary, which by default
has the name skampi.

If you want to know more, out of curiosity or because you want to extend SKaMPI 5, please have
a look at section 6. In particular subsection 6.5 explains the building process in more detail.

9

3 All SKaMPI 5 measurement functions

You can find all SKaMPI 5 measurement functions by looking for functions having a name of the
form measure_〈name〉 in all the files residing in subdirectory measurements of the SKaMPI source
distribution.

3.1 Measurements of point to point communication

Here is a complete list of all measurement functions in the present version of SKaMPI 5 for point
to point communication. At the moment all are simple pingpong measurements. For example the
complete measurement function Pingpong_Send_Recv looks like this:

double measure_Pingpong_Send_Recv(int count, MPI_Datatype datatype,

int tag, int iterations)

{

double start_time, end_time;

MPI_Status status;

int i;

if (iterations<0) { return -1.0; }

if (iterations==0) { return 0.0; }

if(get_measurement_rank() == 0) {

start_time = MPI_Wtime();

for (i=0; i<iterations; i++) {

MPI_Send(get_send_buffer(), count, datatype, 1, tag,

get_measurement_comm());

MPI_Recv(get_recv_buffer(), count, datatype, 1, tag,

get_measurement_comm(), &status);

}

end-time = MPI_Wtime();

MPI_Send(get_send_buffer(), count, datatype, 1, tag, get_measurement_comm());

} else {

MPI_Recv(get_recv_buffer(), count, datatype, 0, tag,

get_measurement_comm(), &status);

start_time = MPI_Wtime();

for (i=0; i<iterations; i++) {

MPI_Send(get_send_buffer(), count, datatype, 0, tag,

get_measurement_comm());

MPI_Recv(get_recv_buffer(), count, datatype, 0, tag,

get_measurement_comm(), &status);

}

end_time = MPI_Wtime();

}

return (end_time - start_time)/iterations;

}

10

That is, process 0 does iterations many pingpong roundtrips and process 1 does iterations

many pongping roundtrips. Both processes return the average time needed for one full message

roundtrip. Note that this is the time for one “ping” plus that for one “pong”. This is different from

some other benchmarks which return half of that time.

The other functions listed below are (mostly obvious) variations.

function parameters remarks

Pingpong_Send_Recv 〈cnt〉, 〈dt〉, 〈tag〉, 〈iters〉
Pingpong_Send_Iprobe_Recv 〈cnt〉, 〈dt〉, 〈tag〉, 〈iters〉 a

Pingpong_Send_Irecv 〈cnt〉, 〈dt〉, 〈tag〉, 〈iters〉

Pingpong_Send_Recv_AT 〈cnt〉, 〈dt〉, 〈tag〉, 〈iters〉 b

Pingpong_Ssend_Recv 〈cnt〉, 〈dt〉, 〈tag〉, 〈iters〉
Pingpong_Isend_Recv 〈cnt〉, 〈dt〉, 〈tag〉, 〈iters〉
Pingpong_Issend_Recv 〈cnt〉, 〈dt〉, 〈tag〉, 〈iters〉
Pingpong_Bsend_Recv 〈cnt〉, 〈dt〉, 〈tag〉, 〈iters〉
Pingpong_Sendrecv 〈s cnt〉, 〈s dt〉, 〈s tag〉,

〈r cnt〉, 〈r dt〉, 〈r tag〉, 〈iters〉
Pingpong_Sendrecv_replace 〈cnt〉, 〈dt〉,

〈s tag〉, 〈r tag〉, 〈iters〉

aProcess 0 actively waits using MPI_Iprobe before receiving.
bThe calls to MPI_Recv specify MPI_ANY_TAG.

3.2 Measurements of collective communication

Here is a complete list of all measurement functions in the present version of SKaMPI 5 for collective
communication.

function parameters remarks

Bcast 〈cnt〉, 〈dt〉, 〈root〉
Bcast_Send_Recv 〈cnt〉, 〈dt〉, 〈root〉 a

Barrier —
Reduce 〈cnt〉, 〈dt〉, 〈op〉, 〈root〉
Allreduce 〈cnt〉, 〈dt〉, 〈op〉
Reduce_Bcast 〈cnt〉, 〈dt〉, 〈op〉, 〈root〉
Reduce_scatter 〈cnt〉, 〈dt〉, 〈op〉, 〈root〉
Alltoall 〈s cnt〉, 〈s dt〉,

〈r cnt〉, 〈r dt〉
Alltoall_Isend_Irecv 〈s cnt〉, 〈s dt〉,

〈r cnt〉, 〈r dt〉
Gather 〈s cnt〉, 〈s dt〉,

〈r cnt〉, 〈r dt〉, 〈root〉
Gather_SR 〈s cnt〉, 〈s dt〉, b

〈r cnt〉, 〈r dt〉, 〈root〉

aa very näıve self-made Bcast
ba very näıve self-made Alltoall using Send and Recv

11

function parameters remarks

Gather_ISWA 〈s cnt〉, 〈s dt〉, a

〈r cnt〉, 〈r dt〉, 〈root〉
Allgather 〈s cnt〉, 〈s dt〉,

〈r cnt〉, 〈r dt〉
Scatter 〈s cnt〉, 〈s dt〉,

〈r cnt〉, 〈r dt〉, 〈root〉
Reduce_Scatterv 〈cnt〉, 〈dt〉, 〈op〉, 〈root〉
Alltoallv 〈s cnt〉, 〈s dt〉,

〈r cnt〉, 〈r dt〉
Alltoallv_Isend_Irecv 〈s cnt〉, 〈s dt〉, b

〈r cnt〉, 〈r dt〉
Gatherv 〈s cnt〉, 〈s dt〉,

〈r cnt〉, 〈r dt〉, 〈root〉
Allgatherv 〈s cnt〉, 〈s dt〉,

〈r cnt〉, 〈r dt〉
Scatterv 〈s cnt〉, 〈s dt〉,

〈r cnt〉, 〈r dt〉, 〈root〉
Scan 〈cnt〉, 〈dt〉, 〈op〉
Comm_split —
Comm_dup —
MPI_Wtime —
myalltoallv 〈s cnt〉, 〈s dt〉, c

〈r cnt〉, 〈r dt〉,
〈charged rank〉, 〈ratio〉

aa very näıve self-made Alltoall using Isend and Waitall
ba very näıve self-made Alltoall
cRead the source for details.

3.3 Measurements of one-sided communication

Here is a complete list of all measurement functions in the present version of SKaMPI 5 for one-sided
communication.

function parameters remarks

MPI_Win_fence_open 〈int〉, 〈dt〉, 〈info〉, 〈assert〉
MPI_Win_fence_close 〈int〉, 〈dt〉, 〈info〉, 〈assert〉,

〈doput〉
MPI_Win_fence_close_collective 〈int〉, 〈dt〉, 〈info〉, 〈assert〉,

〈doput〉
MPI_Win_fence_close_delayed 〈int〉, 〈dt〉, 〈info〉,

〈msg cnt〉, 〈delay us〉
MPI_Win_fence_openclose 〈int〉, 〈dt〉, 〈info〉,

〈doput〉
MPI_Win_start 〈int〉, 〈dt〉, 〈info〉, 〈assert〉

12

function parameters remarks

MPI_Win_start_delayed_post 〈int〉, 〈dt〉, 〈info〉, 〈assert〉,
〈delay us〉, 〈delay rank〉

MPI_Win_post 〈int〉, 〈dt〉, 〈info〉, 〈assert〉
MPI_Win_complete 〈int〉, 〈dt〉, 〈info〉, 〈assert〉,

〈doput〉
MPI_Win_startcomplete 〈int〉, 〈dt〉, 〈info〉, 〈assert〉,

〈doput〉
MPI_Win_complete_n 〈int〉, 〈dt〉, 〈info〉, 〈assert〉,

〈msg cnt〉, 〈delay us〉
MPI_Win_complete_delayed_wait 〈int〉, 〈dt〉, 〈info〉, 〈assert〉,

〈doput〉, 〈delay us〉
MPI_Win_wait_early_complete 〈int〉, 〈dt〉, 〈info〉, 〈assert〉,

〈doput〉, 〈delay us〉
MPI_Win_wait_delayed_complete 〈int〉, 〈dt〉, 〈info〉, 〈assert〉,

〈doput〉, 〈delay us〉
MPI_Win_test 〈int〉, 〈dt〉, 〈info〉, 〈assert〉,

〈doput〉
MPI_Win_test_delayed 〈int〉, 〈dt〉, 〈info〉, 〈assert〉,

〈doput〉, 〈delay us〉
MPI_Win_create 〈int〉, 〈dt〉, 〈info〉
MPI_Win_free 〈int〉, 〈dt〉, 〈info〉,

〈doput〉
MPI_Win_lock 〈int〉, 〈dt〉, 〈info〉, 〈assert〉,

〈lock type〉, 〈dest〉
MPI_Win_lock_desync 〈int〉, 〈dt〉, 〈info〉, 〈assert〉,

〈lock type〉, 〈dest〉, 〈delay us〉
MPI_Win_unlock 〈int〉, 〈dt〉, 〈info〉, 〈assert〉,

〈lock type〉, 〈dest〉, 〈doput〉, 〈delay us〉
MPI_Put_Pingpong 〈int〉, 〈dt〉, 〈info〉
MPI_Put_fence_bidirectional 〈int〉, 〈dt〉, 〈info〉
MPI_Put_callduration 〈int〉, 〈dt〉, 〈info〉
MPI_Isend_callduration 〈int〉, 〈dt〉
MPI_Put_dedicated 〈int〉, 〈dt〉, 〈info〉
MPI_Put_passive 〈int〉, 〈dt〉, 〈info〉
MPI_Put_passive_concurrent 〈int〉, 〈dt〉, 〈info〉,

〈lock type〉
MPI_Put_fence 〈int〉, 〈dt〉, 〈info〉
MPI_Put_activewait_get 〈int〉, 〈info〉
MPI_Put_activewait_twosided 〈int〉, 〈info〉
MPI_Put_activewait_twosided_sleep 〈int〉, 〈info〉, 〈delay us〉
MPI_Get_Pingpong 〈int〉, 〈dt〉, 〈info〉

13

function parameters remarks

MPI_Get_callduration 〈int〉, 〈dt〉, 〈info〉
MPI_Get_dedicated 〈int〉, 〈dt〉, 〈info〉
MPI_Get_passive 〈int〉, 〈dt〉, 〈info〉
MPI_Get_fence 〈int〉, 〈dt〉, 〈info〉
MPI_Get_activewait 〈int〉, 〈info〉
MPI_Get_activewait_sleep 〈int〉, 〈info〉, 〈delay us〉
MPI_Accumulate 〈int〉, 〈dt〉, 〈info〉, 〈op〉
MPI_Accumulate_activewait_twosided 〈int〉, 〈info〉
MPI_Accumulate_concurrent 〈int〉, 〈dt〉, 〈info〉,

〈op〉,〈disjoint〉
Caching 〈int〉, 〈dt〉, 〈info〉, 〈delay us〉
Combining_fence 〈int〉, 〈dt〉, 〈info〉, 〈msg cnt〉
Combining_dedicated 〈int〉, 〈dt〉, 〈info〉, 〈msg cnt〉
Datatype_complex_everytime 〈int〉, 〈info〉
Datatype_complex_once 〈int〉, 〈info〉
Datatype_complex_mixed_everytime 〈int〉, 〈info〉
Datatype_complex_mixed_once 〈int〉, 〈info〉
Datatype_complex_Get 〈int〉, 〈info〉
Datatype_int 〈int〉, 〈info〉
Datatype_simple 〈int〉, 〈info〉
Datatype_simple_Get 〈int〉, 〈info〉
MPI_Put_Shift 〈int〉, 〈dt〉, 〈info〉,

〈distance〉
Exchange 〈int〉, 〈dt〉, 〈msg cnt〉
MPI_Put_Exchange 〈int〉, 〈dt〉, 〈info〉,

〈msg cnt〉
MPI_Put_Exchange_passive 〈int〉, 〈dt〉, 〈info〉,

〈msg cnt〉
MPI_Accumulate_concurrent_multi 〈int〉, 〈dt〉, 〈info〉,

〈msg cnt〉, 〈op〉, 〈disjoint〉
onesided_bcast 〈int〉, 〈dt〉, 〈info〉,

〈bcast count〉
onesided_alltoall 〈int〉, 〈dt〉, 〈info〉,

〈alltoall count〉
multi_Alltoall 〈snd cnt〉, 〈snd dt〉,

〈rcv cnt〉, 〈rcv dt〉, 〈alltoall count〉
onesided_reduce 〈int〉, 〈dt〉, 〈info〉, 〈op〉
onesided_allreduce 〈int〉, 〈dt〉, 〈info〉, 〈op〉
onesided_borderexchange 〈int〉, 〈info〉, 〈iteration count〉,

〈compute〉
twosided_borderexchange 〈int〉, 〈iteration count〉,

14

function parameters remarks
〈compute〉

onesided_borderexchange_fence 〈int〉, 〈info〉, 〈iteration count〉,
〈compute〉

Send 〈int〉, 〈dt〉, 〈tag〉

3.4 Miscellaneous measurements

function parameters remarks

Wtime 〈iters〉 tries to determine the average time needed
for one of 〈iters〉 many calls to MPI_Wtime

4 SKaMPI 5 helper functions and iterators

4.1 Helper functions

returns function parameters remarks
— set_min_repetitions 〈min〉 set the minimum number of single

measurements used for one result
— set_max_repetitions 〈max 〉 set the maximum number of single

measurements used for one result
— set_max_relative_standard_error 〈f 〉 set the maximum standard error

for single measurements
— set_max_nr_node_times 〈count〉 set the maximum nr of procs

for which times are logged in the
output file (see also Subsection 7.1)

For the management of send and receive buffers the following functions are available:

returns function parameters
— set_skampi_buffer 〈size〉
— switch_buffer_cycling_on —
— switch_buffer_cycling_off —
— set_send_buffer_alignment 〈a〉
— set_recv_buffer_alignment 〈a〉
— set_cache_size 〈size〉
— set_skampi_buffer_mpi_alloc_mem 〈size〉, 〈info〉

There are some useful functions (mainly) for constructing new communicators.

returns function parameters
〈int〉 get_comm_size 〈comm〉
〈comm〉 comm2_max_latency_with_root —
〈comm〉 comm 〈size〉
〈comm〉 comm2 〈rank〉, 〈rank〉
〈comm〉 copy_comm 〈comm〉
〈comm〉 comm_first_half 〈comm〉

15

returns function parameters
〈comm〉 comm_second_half 〈comm〉

Some useful mathematical functions:

returns function parameters
〈double〉 sqrt 〈x 〉
〈double〉 cbrt 〈x 〉
〈double〉 sqr 〈x 〉
〈int〉 floor 〈x 〉
〈int〉 ceil 〈x 〉
〈int〉 round_to_fourbytes 〈size〉
〈int〉 atoi 〈str〉
〈int〉 modulo 〈val〉, 〈mod〉
〈double〉 power 〈base〉, 〈exp〉

Now some functions for simple constructions of derived data types:

returns function parameters
〈dt〉 mpi_type_contiguous 〈cnt〉, 〈old dt〉
〈dt〉 mpi_type_vector 〈cnt〉, 〈length〉,

〈stride〉, 〈old dt〉
〈dt〉 mpi_type_hvector 〈cnt〉, 〈length〉,

〈stride〉, 〈old dt〉

Three functions which allow the use of MPI_Info variables:

returns function parameters
〈info〉 info_create —
— info_free 〈info〉
— info_set 〈info〉, 〈key〉, 〈value〉

If you know, what you are doing, you can switch the methods for benchmarking collective operations.
There is one case, though, where you must change something: If you are running measurements

in a communicator of size one, please call choose_no_synchronization() in your .ski file before

doing the measurements.
Furthermore, if you know that the running times of your measurements are large enough so that

you can ignore the time consumed by a call to MPI_Barrier() (or if the default choose_real_

synchronization() gives you problems1) you can call choose_barrier_synchronization() in
your .ski file before doing the measurements.

returns function parameters
— choose_no_synchronization —
— choose_barrier_synchronization —
— choose_real_synchronization —
— init_time_accounting —
— print_time_accounting_info —

1We do have one user reporting that SKaMPI 5 freezes with this for large collective benchmarks.

16

4.2 Iterators

Currently there are only two (silly) builtin iterators for demonstration purposes. See the functions
iterator_squares() and iterator_range() in measurements/demo.c.

See Section 6.3 for how to write your own iterators.

5 Syntax and semantics of SKaMPI 5 input files

• the content of the input file is a program which is interpreted in a way similar to SIMD

• free format

• comments start with ’#’ and extend to the end of the line

• the program consists of measurement blocks with local variables and statements (with local
scope) and global variables and statements outside of these blocks

• variables use dynamic types; global variables can’t be changed inside of a measurement block,
a new local variables of the same name is initialized

5.1 Data types

• integer: usual arithmetic operations, suffixes of kb, KiB, mb, MiB, gb or GiB denote a
multiplication with 210, 220 and 230 respectively.

• double: usual arithmetic operations

• strings (no operations implemented, can be used for parameters to self-implemented functions)

• MPI_Datatype, MPI_Comm, MPI_Op and MPI_Info

5.2 Predefined Constants

• all data-types: MPI_CHAR, MPI_BYTE, MPI_SHORT, MPI_INT, MPI_LONG, MPI_FLOAT, MPI_DOUBLE,
MPI_UNSIGNED, MPI_UNSIGNED_CHAR, MPI_UNSIGNED_LONG, MPI_UNSIGNED_LONG_LONG, MPI_
LONG_DOUBLE, MPI_FLOAT_INT, MPI_LONG_INT, MPI_DOUBLE_INT, MPI_SHORT_INT, MPI_2INT,
MPI_LONG_DOUBLE_INT, MPI_LONG_LONG_INT

• all reduction operators: MPI_MAX, MPI_MIN, MPI_SUM, MPI_PROD, MPI_LAND, MPI_BAND, MPI_
LOR, MPI_BOR, MPI_LXOR, MPI_BXOR, MPI_MINLOC, MPI_MAXLOC

For one-sided communciation there is also MPI_REPLACE.

• MPI_COMM_WORLD

• MPI_UNDEFINED

• assertions: MPI_MODE_NOPRECEDE, MPI_MODE_NOSUCCEED, MPI_MODE_NOCHECK, MPI_MODE_NOSTORE,
MPI_MODE_NOPUT

17

5.3 Control structures

5.3.1 Loops

Loops can be nested. There are several types of loops. First there are what one could call (lacking
a better word) computed loops.

Computed Loops: Its simplest form is

• for 〈var〉 = 〈first.val〉 to 〈last.val〉 do 〈loop body〉 od

By default 〈var〉 is incremented by 1. Optionally you can specify a different number using
the following syntax:

• for 〈var〉 = 〈first.val〉 to 〈last.val〉 step 〈step.val〉 do 〈loop body〉 od

The following variation allows to request that the loop variable is not incremented by the
specified amount but that it is multiplied by that amount:

• for 〈var〉 = 〈first.val〉 to 〈last.val〉 step * 〈step.val〉 do 〈loop body〉 od

For loops with a multiplicative step one may additionally request that the resulting values
for the loop variable are rounded to a multiple of a given integer 〈j 〉 using the syntax

• for 〈var〉 = 〈first.val〉 to 〈last.val〉 step * 〈step.val〉 multipleof 〈j 〉 do 〈loop body〉 od

Consider this example:

• for i = 1 to 23 step *sqrt(2) multipleof 4 do etc.

This would assign the following values to variable i:

In all forms of computed loops the upper bound for the loop variable may be specified as ...
— that is: three consecutive dots without spaces in between. This means that the iterations
repeats until the maximum buffer size (or half the buffer size when using buffer cycling) is
reached.

Autorefined loops: For all of the above computed loops there is a variation called autorefine loop.
Its syntax is the same as above, except that the keyword is autorefine instead of for. For
example

• autorefine 〈var〉 = 〈first.val〉 to 〈last.val〉 step * 〈step.val〉 do 〈loop body〉 od

An autorefine loop works as follows: First it is executed as if it were a for loop. Then
SKaMPIuses a heuristic to check whether there are unexpected looking “jumps” or “disconti-
nuities” in the sequence of timing results. If there are, SKaMPIdoes additional measurements
at additional values for the loop variable which are “close” to the discontinuity.

Enumerated loops: You can loop over an explicitly given list of values like this:

• for 〈var〉 in [〈list of values〉] do 〈loop body〉 od

18

For example:

for dt in [MPI_INT, MPI_DOUBLE, MPI_BYTE] do

would assign the three values (of type MPI_Datatype) to variable dt.

Iterators: for 〈var〉 in 〈iterator〉(〈args〉) do 〈loop body〉 od loop over the values produced by an
iterator

5.3.2 Conditional statements

• if 〈cond〉 then 〈then-part〉 fi

• if 〈cond〉 then 〈then-part〉 else 〈else-part〉 fi

In the conditions the usual comparison operators for numerical values are available.

5.3.3 Measurement statements

• measure 〈communicator〉 : 〈measurement function〉(〈args〉)

Execute a measurement sequence. This means that the measurement function is called with the
given parameters several times. Only processes of the mentioned communicator are participating
in this measurement sequence. The number of repetitions is determined as follows:

• First the measurement function is called k times, where k is the argument of the most recent
call to set_min_repetitions; if the function has not been called, a default value of 8 is used.

• Then the relative standard error of the running times measured so far is computed. If it is
smaller than (or equal to) a prespecified relative standard error e, the measurement sequence
is finished. Here, e is the argument to the most recent call to set_max_relative_standard_

error; if the function has not been called, a default value of 0.1 is used.

• Otherwise, while the current relative standard error is larger than e and a maximum number
m of repetitions has not been carried out, the measurement function is called again with the
same arguments. Here, m is the argument to the most recent call to set_max_repetitions;
if the function has not been called, a default value of 33 is used.

Do not use more than one measurement statement inside a measurement block.

6 Extending SKaMPI 5

Definitions of self-made functions can be placed in any .c-file in the subdirectory ’measurements’.
A Perl script is used to extract the interfaces of these functions and to generate the source file m.c

used by skampi; see Figure 2. This means that a working perl interpreter is needed as soon as
SKaMPI is extended with new functions. Of course, it is possible to transfer the generated C source
file to another target host without perl interpreter.

Functions which should be usable by SKaMPI have to have the following prefixes (additionally
at the moment function definitions are restricted to one source code line):

• func_ normal helper function

19

source files in

measurements/

extracting

measurements with

extract.pl

m.c

other

SKaMPI

source files

building SKaMPI with

make

SKaMPI

binary

SKaMPI

input file

running SKaMPI with

mpiexec or mpirun

SKaMPI

output file

Figure 2: A more detailed view of how SKaMPI is built.

• measure_ actual measurement function, possibly accompanied by

• init_ optional initialization function for a measurement function

• finalize_ optional de-initialization function for a measurement function

• iterator_ iterator

6.1 Buffer handling

One needs some basic understanding of SKaMPI’s buffer handling in order to be able to write
meaningful measurements functions. In each process there are two buffers available, which are
called the send buffer and the receive buffer. In a measure_ function use calls of get_send_

buffer() and get_recv_buffer() to get pointers to these buffers. Repeated calls of the same
function may return different addresses. This is an attempt to reduce cache effects. You should call
set_send_buffer_usage() and set_recv_buffer_usage() in the init_ functions to tell SKaMPI

how many bytes will be needed in the send and receive buffers.

20

6.2 Writing a new measurement function

For each new measurement the corresponding init_, measure_ and finalize_ functions have to
have the same parameters. init_ and finalize_ functions are void-functions, measure_ functions
return a double value meaning the measured time in seconds. Processes which can’t return a
meaningful time, should return a negative value. The data-types of the parameters are restricted
to the data-types used in the input file.

Definition of functions relevant to skampi have to be inside a block surrounded by the following
lines;

#pragma weak begin_skampi_extensions

#pragma weak end_skampi_extensions

(In fact, the end marker can be omitted.)
A measurement with a fixed set of parameters consists of one call of the init_ function (if

defined), several calls of the measure_ function and finally one call of the finalize_ function (if
defined).

The init_ function has to set a couple of things:

• the use of send/receive buffer is set with set_send_buffer_usage() resp. set_recv_buffer_
usage(). The default is 0, for operations like MPI_Gather the sizes can be different for the
different processes.

• set_reported_message_size() sets the message size reported in the output file. The default
is 0. It should be the number of bytes transferred by one send. In the SKaMPI 5 output file
this number is printed in each measurement line (see also Sections 6.2.2 and 7.1).

You can also allocate memory, communicators etc.
In the finalize_ function these objects can be released.
You do not have to take care of the measurement communicators; SKaMPI 5 does that for you.

6.2.1 Doing synchronized measurements

SKaMPI 5 supports what we call synchronized measurements, i.e. all processes of the measurement
communicator start at (approximately) the same time, and a time interval is reserved for the
whole duration of the measurement. This is not achieved (in fact cannot be achieved) by calls to
MPI_Barrier . Instead SKaMPI 5 keeps track of the differences between the local times (as reported
by MPI_Wtime) on different processors in order to know a(n approximation of) global time. This
gives much better results; see our paper in the proceedings of EuroPVM/MPI 2002.

In order to use this method (which we highly recommend, in particular for benchmarking col-
lective operations) you should do the following:

• Use #include "../synchronize.h" at the top of the file.

• In the init_ function for your measurement call init_synchronization().

• In the measure_ function for your measurement insert calls of start_synchronization()
and stop_synchronization() as follows:

21

– start_synchronization() should be called immediately before the code block you want
to benchmark. For convenience this call will return the current local time (it calls
MPI_Wtime() as its last action and returns that value).

– stop_synchronization() should be called immediately after the code block you want
to benchmark. For convenience this call will return the current local time (it calls
MPI_Wtime() as its first action and returns that value).

You can think of start_synchronization() and stop_synchronization() as two glorified
calls to MPI_Wtime() which in addition to taking the time carry out some administrative
tasks.

6.2.2 Functions available inside measure_ functions

There are several additional functions which are very useful for writing measurement function.
They are available after the line

#include "../misc.h"

at the top of your file.
Of course, each measurement is carried out in a communicator, the one specified in the SKaMPI

input file (see Section 2.5). The following functions give you programmatic access to it:

ret type function return value
MPI_Comm get_measurement_comm() the current measurement communicator
int get_measurement_rank() rank of calling process in the current measurement

communicator
int get_measurement_size() size of the current measurement communicator

For the handling of communication buffers the following functions are useful:

ret type function return value
void * get_send_buffer() ptr to current send buffer
void * get_recv_buffer() ptr to current recv buffer
void set_send_buffer_usage(MPI_Aint) set size of current send buffer (bytes)
MPI_Aint get_send_buffer_usage() get size of current send buffer (bytes)
void set_recv_buffer_usage(MPI_Aint) set size of current recv buffer (bytes)
MPI_Aint get_recv_buffer_usage() get size of current recv buffer (bytes)

The following functions “guessess” in a relatively simple-minded way how much memory is needed
for storing a certain number of data elements of a specified MPI_Datatype. Be warned that the
return value may be wrong for datatypes with holes and funny offsets. Help for improvements is
welcome.

ret type function
MPI_Aint get_extent(int, MPI_Datatype)

Because it is not so simple to find out, how many bytes are sent, e.g. by an MPI_Send, you can and
always should tell SKaMPI explicitly, which number should be reported in the output file:

22

ret type function
void set_reported_message_size(MPI_Aint) set current reported

message size (bytes)
MPI_Aint get_reported_message_size() get current reported

message size (bytes)

If you need to allocate memory, the following functions may be useful. They allocate the specified
number of elements of the specified data-type with malloc and check whether the memory is really
available. The check is doing using assert, i.e. the program is aborted if not enough memory is
available.

ret type function return value
double * malloc_doubles(int) pointer to memory segment
int * malloc_ints(int) pointer to memory segment
char * malloc_chars(int) pointer to memory segment
MPI_Request * malloc_reqs(int) pointer to memory segment

Some simple mathematical functions:

ret type function return value
int imax2(int, int) maximum of two integers
int imin2(int, int) minimum of two integers
int imax3(int, int, int) maximum of three integers
double fmin2(double, double) minimum of two doubles
double fmax2(double, double) maximum of two doubles
double fsqr(double) square of a double

6.3 Writing a new iterator

The prototype of an iterator function has to look like this:

〈ret.type〉 iterator_〈itname〉(void ** self, 〈form.args〉)

The iterator would then be used in the SKaMPI 5 input file in the form

for 〈var〉 in 〈itname〉(〈act.args〉) do . . . od

i.e. the self is not visible at the point of usage. It is provided by the runtime environment of the
interpreter; all the other arguments are taken from the 〈act.args〉.

The self argument is used internally to realize the following protocol:

• For getting the real value from the iterator, it is called with *self==NULL. This is the
indication for the iterator, that it should initialize itself in whatever way is reasonable.

The iterator can change *self to a pointer to real memory, where it can store some internal
state between subsequent calls.

The return value from the function is the intial value assigned to the loop variable.

• For each iteration the function is called again and again.

23

• The first time the iterator is called after it has produced its last reasonable value, it should
set *self to NULL again, indicating to the runtime environment that it is exhausted.

The environment will then know that the whole loop has been completed, and the return
value will be ignored.

As an example (taken from measurements/demo.c) have a look a the following simple iterator,
which is to produce all integers starting from a start value up to, but excluding an end value:

int int_state;

int iterator_range(void **self, int start, int end)

{

if(*self == NULL) { // we are called the first time; let’s initialize!

*self = &int_state; // use this for storing some internal state

int_state = start+1; // remember what to return next time

return start;

};

if(int_state >= end) { // our range is exhausted

*self = NULL; // tell the environment, that we’re done

return 42; // the return value will be ignored

}

// in all other cases

return int_state++; // return next value and update internal state

}

The disadvantage of this iterator is that it uses a global variable for storing its internal state.
As a consequence you cannot have two (or more) nested loops which both use the range iterator.
For this to be possible, the storage for the internal state of the iterator should be malloced during
initialization and freed at the end. See the function iterator_squares() in measurements/demo.

c for an example.

6.4 Writing a new helper function

(to be done)

6.5 Building an extended version of SKaMPI

(to be done)

24

7 Miscellaneous

7.1 Format of output file

As long as there is no better description, here is an example. Assume that we have SKaMPI running
on four processors with a simple measurement block like this:

begin measurement "MPI_Bcast-length"

for nodes = 2 to 4 do

for count = 1 to ... step *sqrt(2) do

measure comm(nodes) Bcast(count, MPI_INT, 0)

od

od

end measurement

produces the following lines in the output file:

begin result "MPI_Bcast-length"

nodes= 2 count= 1 4 67.3 1.4 9 11.3 67.3

nodes= 2 count= 1 4 63.8 0.4 9 9.0 63.8

nodes= 2 count= 2 8 65.3 0.9 13 9.1 65.3

nodes= 2 count= 3 12 64.6 0.9 8 9.2 64.6

...

nodes= 3 count= 64 256 133.9 0.1 11 12.5 133.9 108.7

nodes= 3 count= 91 364 167.2 0.8 11 13.7 167.2 128.5

nodes= 3 count= 128 512 207.2 1.2 9 13.0 207.2 159.8

...

nodes= 4 count= 91 364 275.8 3.1 10 22.0 175.6 148.1 275.8

nodes= 4 count= 128 512 326.7 1.6 8 22.5 216.7 174.0 326.7

nodes= 4 count= 181 724 394.7 2.1 13 20.6 267.3 207.6 394.7

nodes= 4 count= 256 1024 508.0 3.0 8 20.7 345.1 265.9 508.0

...

end result "MPI_Bcast-length"

Let us call a field something which is separated from other fields in a line by whitespace.

• If there are k nested loops, the first 2k fields are names and values of all loop variables, with
the outermost loop variable always listed first.

• The next field is always the value set with set_reported_message_size().

• The next three fields are

– the result time in microseconds,

– the standard error in microseconds and

– the number of single measurements that have actually been done for the given set of
parameters.

25

• All following fields are the result times of different processes.

At least for benchmarks collective communication for large communicators one does not want
to know the times of all processes. Therefore SKaMPI uses the following approach. You can
call a function set_max_nr_node_times(〈max 〉) with a non-negative integer 〈max 〉 in the
skampi input file to limit to 〈max 〉 the maximum number of times measured on single processes
which are reported in the skampi output file. By default, if you do not call set_max_nr_node_
times() yourself, skampi behaves as if you had called set_max_nr_node_times(16).

It remains to explain which times are reported if there are more than M. First, the runninng
times of all processes are sorted. Then

– if 〈max 〉 is 0: no running time is reported.

– if 〈max 〉 is 1: the ”middle” running time is reported.

– if 〈max 〉 is ≥ 2: the smallest and the largest time are reported as well as 〈max 〉−2
”equidistantly distributed” in between.

7.2 Preparing diagrams from SKaMPI output files

SKaMPI 4 had a so-called report generator. At the moment the SKaMPI 5 distribution is still
lacking such a tool. You cannot use the old one, because we had to change the format of the output
files.

Since the format of SKaMPI’s output files is sufficiently straightforward, for simple use cases
you can use gnuplot directly (using its ’using’ feature . . .). Here is a simple example. Assume that
your .sko file includes a section with some measurement results looking like this:

begin result "Pingpong_Send_Recv"

iterations= 1 4 6.0 0.0 160 5.7 5.7

iterations= 2 4 4.5 0.0 80 4.5 4.4

iterations= 3 4 4.0 0.0 80 3.9 3.9

iterations= 4 4 3.8 0.0 80 3.7 3.7

iterations= 6 4 3.5 0.0 80 3.5 3.5

iterations= 8 4 3.4 0.0 80 3.3 3.3

iterations= 11 4 3.2 0.0 80 3.2 3.2

iterations= 16 4 3.2 0.0 80 3.1 3.1

iterations= 23 4 3.1 0.0 80 3.1 3.1

iterations= 32 4 3.1 0.0 80 3.1 3.1

iterations= 45 4 3.0 0.0 80 3.0 3.0

iterations= 64 4 3.0 0.0 80 3.0 3.0

iterations= 91 4 3.0 0.0 80 3.0 3.0

iterations= 128 4 3.0 0.0 80 3.0 3.0

iterations= 181 4 3.0 0.0 80 3.0 3.0

iterations= 256 4 3.0 0.0 80 3.0 3.0

iterations= 362 4 3.0 0.0 80 3.0 3.0

iterations= 512 4 3.0 0.0 80 3.0 3.0

end result "Pingpong_Send_Recv"

We have included this as file demo.sko in the SKaMPI 5 distribution.

26

What you (probably) want to plot is how the measured roundtrip time of the pingpongs, which
can be found in field 4 of each line, changes as the number of roundtrips, which can be found in
field 2 of each line, increases. Here we number the fields starting from 1, because gnuplot does it
that way, too. Therefore basically the plot command to be given to gnuplot should look like this:

plot "demo.sko" using ($2):($4) with linespoints title "Pingpong_Send_Recv"

The important point here is the use of ($2) and ($4) for selecting the second and fourth field of
ead data line to be used for plotting. A demo gnuplot file demo.gpl is included in the SKaMPI 5

distribution which actually does a little bit more. If you run the command

gnuplot demo.gpl

an eps file named demo.eps will be generated.

7.3 Our TODO list

There are some nice features in SKaMPI 4 which have not yet been integrated into SKaMPI 5, as
well as some other nice ideas. The following topics will be addressed by forthcoming releases of
SKaMPI:

• Auto-refinement (more precise measurement at interesting spots like steps in the output
graph) for 2 and more dimensions. This case can get complicated.

• Self-defined data-types: support exists, only predefined constructor functions are still miss-
ing, but can implemented very easily (example is mpi_type_contiguous in measurements/

datatypes.c)

• virtual topologies

• an include mechanism for ski files

• some test cases

8 Pitfalls of benchmarking

TODO:

• show how SKaMPI can help to avoid at least of the pitfalls of benchmarking listed in the
paper “Reproducible Measurements of MPI Performance Characteristics” by Gropp and Lusk
(EuroPVM/MPI 1999);

• discuss the particular difficulties of benchmarking MPIIO;

9 Acknowledgements

We are grateful to all the users who contributed in one way or another to improvements of SKaMPI

5. We’d like to thank (in alphabetical order) Kevin Ball and Phil Livermore for taking the time to
give us some feedback.

27

